"Non-reciprocal microwave behavior on magnetic nanowired substrates"

De La Torre Medina, Joaquin ; Carreón González, C.E. ; Hamoir, Gaël ; Encinas, Armando ; Piraux, Luc ; Huynen, Isabelle

CITE THIS VERSION

De La Torre Medina, Joaquin ; Carreón González, C.E. ; Hamoir, Gaël ; Encinas, Armando ; Piraux, Luc ; et. al. Non-reciprocal microwave behavior on magnetic nanowired substrates.International Multidisciplinary Joint Meeting 2013 (Morelia Michoacan, Mexico, du 13/05/2013 au 17/05/2013). http://hdl.handle.net/2078.1/131214

Le dépôt institutionnel DIAL est destiné au dépôt et à la diffusion de documents scientifiques émanants des membres de l'UCLouvain. Toute utilisation de ce document à des fin lucratives ou commerciales est strictement interdite. L'utilisateur s'engage à respecter les droits d'auteur lié à ce document, principalement le droit à l'intégrité de l'oeuvre et le droit à la paternité. La politique complète de copyright est disponible sur la page Copyright policy

DIAL is an institutional repository for the deposit and dissemination of scientific documents from UCLouvain members. Usage of this document for profit or commercial purposes is strictly prohibited. User agrees to respect copyright about this document, mainly text integrity and source mention. Full content of copyright policy is available at Copyright policy

Available at: http://hdl.handle.net/2078.1/131214
Non-reciprocal microwave behavior on magnetic nanowired substrates

J. De la torre Medinaa, C. E. Carreón Gonzálezb, G. Hamoirc, A. Encinasb, L. Pirauxc, I. Huynend

a Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
b Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
c Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Belgium
d Institute of Information and Communications Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Belgium
E-mail: j.delatorre.medina@gmail.com

Nowadays the growing demand for novel miniaturized and more functional passive non-reciprocal microwave devices has motivated very much research activity around nanotechnology and nanosciences. This has promoted the application of novel structures based on nanocomposite materials, which consist of a very large number of magnetic nano-objects embedded in a porous host matrix with properties that are only characteristic at the nanoscale. For instance, nanocomposites like the so-called magnetic nanowired substrates are self-biased, so the application of an external magnetic field using electromagnets is unnecessary, which in turn lead to a significant miniaturization of potential devices based on these systems [1-3].

In this work we present a study, on one hand, on the realization of magnetic nanowired substrates with specific geometric factors and magnetic properties. This has been achieved by controlling the nanocomposites microstructure by using an electrodeposition technique for obtaining an asymmetrical growth of the nanowires inside a nanoporous template. On the other hand, we present results on the application of magnetic nanowired substrates for obtaining a microwave non-reciprocal behavior, which is observed from the difference between the microwave absorption in the forward and backward directions using a microstrip line geometry. This behavior can be tuned by an adequate choice of the nanowires materials, but also by controlling the nanowire array geometry, which lead to a microwave absorption dependence on the permittivity and permeability of the magnetic nanowired substrate.

References