"Is tree mineral nutrition deteriorating in Europe?"

Jonard, Mathieu ; Fürst, Alfred ; Verstraeten, Arne ; Thimonier, Anne ; Timmerman, Volkmar ; Ptotcic, Nenad ; Waldner, Peter ; Benham, Sue ; Hansen, Karin ; Merilä, Paivi ; Ponette, Quentin ; de la Cruz, Ana C. ; Roskams, Peter ; Nicolas, Manuel ; Croisé, Luc ; Ingerslev, Morten ; Matteuci, Giorgio ; Decinti, Bruno ; Bascietto, Marco ; Rautio, Pasi

CITE THIS VERSION

Jonard, Mathieu ; Fürst, Alfred ; Verstraeten, Arne ; Thimonier, Anne ; Timmerman, Volkmar ; et. al. Is tree mineral nutrition deteriorating in Europe?. 1st ICOS Science Conference on Greenhouse Gases and Biogeochemical Cycles (Brussels, du 23/09/2014 au 25/09/2014). http://hdl.handle.net/2078.1/152069

Le dépôt institutionnel DIAL est destiné au dépôt et à la diffusion de documents scientifiques émanants des membres de l'UCLouvain. Toute utilisation de ce document à des fin lucratives ou commerciales est strictement interdite. L'utilisateur s'engage à respecter les droits d'auteur lié à ce document, principalement le droit à l'intégrité de l'oeuvre et le droit à la paternité. La politique complète de copyright est disponible sur la page Copyright policy.

DIAL is an institutional repository for the deposit and dissemination of scientific documents from UCLouvain members. Usage of this document for profit or commercial purposes is strictly prohibited. User agrees to respect copyright about this document, mainly text integrity and source mention. Full content of copyright policy is available at Copyright policy.
The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth limiting nutrients and to assess changes in tree nutrition during the past two decades. We analysed the foliar nutrition data collected during 1992-2009 on the intensive forest monitoring plots of the ICP Forests programme. This dataset is unique in its scope and size, and has the further advantage of being harmonized among all participating countries. Of the 22 significant temporal trends that were observed in foliar nutrient concentrations, 20 were decreasing and 2 were increasing. Altogether our results show a clear deterioration in P nutrition during the past two decades in some of the main tree species. Our study also highlights some downward trends that should be monitored closely in the future since they could become alarming: e.g. decrease in foliar S concentration in P. abies and P. sylvestris. Increased tree productivity, possibly resulting from high N deposition and from the global increase in atmospheric CO₂, has led to higher nutrient demand by trees. Soil nutrient supply was however not always sufficient to meet the demand of faster growing trees. As tree nutrient status exerts a tight control on net ecosystem productivity, this deterioration in tree nutrition could have a strong impact on the response of forest ecosystems to climate change.