"The genus Perenniporia s.l. (Polyporaceae) in Africa V. Perenniporia alboferruginea sp. nov. from Cameroon."

Decock, Cony ; Mossebo, D. ; Yombiyeni, P.

Document type: Article de périodique (Journal article)

Référence bibliographique

DOI : 10.5091/plecevo.2011.509

Available at: http://hdl.handle.net/2078.1/82305

[Downloaded 2019/01/11 at 06:37:06]
Studies in *Perenniporia* s. lat. (Basidiomycota). African taxa V: *Perenniporia alboferruginea* sp. nov. from Cameroon

Cony Decock¹⁺, Dominique C. Mossebo² & Prudence Yombiyeni³

¹Mycothèque de l’Université catholique de Louvain (MUCL), Earth and Life Institute – Mycology, Université catholique de Louvain, Croix du Sud 3, BE-1348 Louvain-la-Neuve, Belgium [MUCL is a member of the Belgian Coordinated Collections of Micro-organisms BCCM⁴]\n
²Université de Yaoundé 1, Laboratoire de Mycologie, B.P. 1456 Yaoundé, Cameroon

³Institut de Recherche en Ecologie Tropicale (IRET, CENAREST), Gros Bouquet, Libreville, Gabon

*Author for correspondence: cony.decock@uclouvain.be

INTRODUCTION

The taxonomic knowledge of Polypores – the core polyporoid clade *sensu* Binder et al. (2005) – in Central Africa or, in biogeographical terms, the Guineo-Congolian phytogeographic region are still poorly investigated. As part of an ongoing survey of the Polypores in this region, an undescribed species of *Perenniporia* was collected in the Dja Biosphere Reserve, in south-eastern Cameroon.

Background and aims – The Polypores of central Africa (or in biogeographical terms, the Guineo-Congolian phytogeographic region) are still poorly investigated. As part of an ongoing survey of the Polypores in this region, an undescribed species of *Perenniporia* was collected in the Dja Biosphere Reserve, in south-eastern Cameroon.

Methods – Species are described using morphology-based methods.

Key results – *Perenniporia alboferruginea* sp. nov. is proposed, described and illustrated. Several new collections of poorly known species are reported, and an identification key for the *Perenniporia* species occurring in the Dja Biosphere Reserve and neighbouring areas is presented.

Conclusion – About ten years ago, two *Perenniporia* species were recorded from the Dja Biosphere Reserve. Nowadays, seven species are known from the area, of which four were described based on material originating from this locality.

Key words – Cameroon, Central Africa, *Perenniporia*, Polypores, taxonomy.

MATERIALS AND METHODS

Material and collecting localities

The type specimen was collected in the northern part of the Dja Biosphere Reserve (ECOFAC station), along the Dja River. The Reserve (02°40’– 03°23’N, 12°25’ – 13°35’E, alt. 400–800 m) consists in 526,000 ha of mainly dense evergreen Congo rainforest, with old secondary forests around villages, and various, scattered, *Gilbertiodendron dewevrei* (De Wild.) J.Léonard (Fabaceae) dominating stands.

The type or authentic specimens are preserved at MUCL and NY [herbarium acronyms are from Thiers (continuously updated)].

MUCL original strains were isolated from basidiome tissues during field works, on malt extract agar supplemented with 2 ppm benomyl (benlate) and 50 ppm chloramphenicol, and later purified in the laboratory. Living cultures are preserved at MUCL, with a duplicate of ex-type strain at the CBS.
Decock, Mossebo & Yombiyeni, *Perenniporia alboferruginea* sp. nov.

Description

Colours are described according to Kornerup & Wanscher (1981). Sections were carefully dissected under a stereomicroscope in hot (40°C) NaOH 3% solution, and later examined in NaOH 3% solution at room temperature. Sections were also examined in Melzer’s reagent and lactic acid cotton blue to evidence staining reaction. All microscopic measurements were done in Melzer’s reagent. In presenting the size range of several microscopic elements, 5% of the measurements at each end of the range are given in parentheses when relevant. In the text, the following abbreviations are used: $X = \text{arithmetic mean}$, $R = \text{the ratio of length/width of basidiospores}$, and $\bar{X}_n = \text{arithmetic mean of the ratio } R$.

RESULTS

Perenniporia alboferruginea Decock sp. nov.

Basidiocarpi annui, resupinati, adnati, effusi, margine albo vel ferrugineo; pori rotundati 5–6/mm, (105–)115–145(–150) µm lati, albidi; systema hypharum dimitica. hyphae generativa fibulatae, hyalinae; hyphae skeletales pauciramosae, crassitunicatae; basidia clavata vel pedunculata, tetrasterigmatica; basidiosporae oblongae-ellipsoideae, ellipsoideae vel leviter ovoideae, cum apice truncata, crassitunicata, adextrinoidea, 4.5–5.5(–5.8) × (3.0–)3.3–4.0 µm ($X = 5.0 \times 3.6 µm$); chlamydosporae nullae. – Type: Cameroon, East Province, Dja Biosphere Reserve, near Somalomo, secondary forest located behind the sport field, along the Dja River, walking upstream, 03°20’44”N 13°02’15”E, alt. 650 m, on a dead fallen trunk of an unidentified angiosperm, 40–50 cm diam, 7 Apr. 2007, C. Decock CA-07-64 (holo-: herbarium MUCL 49279; iso-: NY; culture ex holotype in MUCL (MUCL 49279) and CBS); Mycobank number: MB 519515.

Basidiomes resupinate, effused, adnate, seasonal, extending up to 110 mm long × 30 mm wide, from 2 mm up to 10 mm thick at the upper margin when growing on vertical substrate; margin irregular, white at the outside, with the upper surface crust-like, oxide (ferruginous) red [(8–9)(D–E)7, reddish brown, mahogany, oxblood red, dark ferruginous], discoloring to dark brown (7F7) in alkali, smooth, glabrous; pore surface even, white when fresh, drying whitish grey (1B1); pores even, round to angular, 5–6/mm, (105–)115–145(–150) µm wide ($X = 128 µm$), or slightly elongated, 150–200 × 105–125 µm; dissepiments thin, entire, smooth, 25–55(–100) µm thick ($X = 35 µm$); tube layer unique, with a (soft) corky consistency, a fibrous texture when fresh, 1–3 mm thick, white, whitish, or slightly darker, up to pale corky (5B3); subiculum 5–7 mm thick, pale corky to corky (5B3, greyish orange). Hyphal system dimitic, both in the context and the trama of the tubes, with generative and skeleto-binding hyphae; generative hyphae difficult to find, hyaline, sparsely branched, clamped, 1.5–3.0 µm diam; vegetative hyphae in the context and the hymenophoral trama of the skeleto-binding type, hyaline, (non-) to slightly dextrinoid, cyanophilous, variously branched, the branching denser in the hymenophoral trama compare to the context, with a short, poorly differentiated basal stalk, arising from a generative hyphae and clamped at the basal septum, 20–50 µm long ($X = 29 µm$), widening from 1.5–2.5 µm wide at the basal septum ($X = 2.3 µm$) to 2.0–4.0 µm wide ($X = 2.9 µm$) at the apical branching point, sometime locally inflated, thick-walled but not solid, straight to geniculate then sometimes with small, lateral aborted processes, and one or two (rarely three) levels of branches, either lateral, sub-apical or apical, measured up to 250 µm long, then skeletal-like, straight to sinuous, thick-walled but not solid, and ending thin-walled (very occasionally with secondary septa), 2.0–2.8(–3.1) µm wide ($X = 2.2 µm$) in the main part; upper crust made of short, 20–70 × 4.0–7.5 µm, slightly clavate, thick-walled hyphae, ending rounded, yellowish, discoloring yellowish brown in alkali, densely packed, forming a palisade like hymenoderm-

Figure 1 – Perenniporia alboferruginea. Basidiome of the holotype in situ. Scale bar = 10 mm.
Figure 2 – *Perenniporia alboferruginea*. Vegetative hyphae from the hymenophoral trama. Scale bar = 30 µm.

Like structure. **Hymenium**: basidia hyaline, clavate to pedunculate, clamped, and with four sterigmata, 12–15 × 7–10 µm ($\bar{X} = 13.5 \times 7.5 \mu m$); cystidia or other sterile structure absent; basidiospores ellipsoid, oblong-ellipsoid to broadly ellipsoid, or slightly ovoid, apically truncate, thick-walled but with an apical germ pore, with a small apiculus, hyaline, not dextrinoid, cyanophilous, 4.5–5.5(–5.8) × (3.0–)3.3–4.0 µm ($\bar{X} = 5.0 \times 3.6 \mu m$), R = 1.25–1.5–1.5(–1.66) ($\bar{X}_R = 1.4$). **Chlamydospores** absent. **Type of rot**: white rot [presence of laccases positive when tested with syringaldazine (Harkin & Obst 1974)]. Figs 1–3.

Substrate – On a dead wood, unidentified angiosperm.

Distribution – Known only from the type locality in Cameroon.

DISCUSSION

The thick, resupinate and effused basidiome with a tinted (dark) ferruginous red upper margin, contrasting the pure white pore surface (fig. 1A–C) make the species unique within *Perenniporia*.

Microscopically, *P. alboferruginea* is above all characterized by small ($\bar{X} = 5.0 \times 3.6 \mu m$) ellipsoid to ovoid, truncate (fig. 2), and non-dextrinoid basidiospores. The vegetative hyphae in the upper surface (fig. 3A–B) make also the species peculiar. They are rather short, arising directly from generative hyphae or as a short lateral process, commonly unbranched, very thick-walled, yellowish brown in alkali, and densely packed, forming a palisade like hymenoderm-like structure. Otherwise, the hyphal system is dimitic.
trama of the tubes is composed of variously branched vegetative hyphae, with as extremes, short, laxly branched, binding-like hyphae and skeleto-binding hyphae with long, unbranched skeletal-like processes. Intermediates exist forming a continuum from one extreme to the other. Reduction of the branching and elongation of one or two ramifications of binding-like hyphae can in fine lead to skeletal-like hyphae (fig. 3A–B). Branching and branch length may also vary with localization within the trama, with an increase of branching and shortening of branches from the context to the core of the hymenophoral trama, toward the hymenium.

Locally, *P. alboferruginea* should be compared to *P. centrali-africana* Decock & Mossebo (Decock & Mossebo 2001) that has a similar hyphal system and vegetative hyphae. *Perenniporia centrali-africana* is also, in a phylogenetic perspective (data not shown), thus far, the closest species. It forms pseudopilei which are dark brown to black with age, without any tint of reddish, has a brown to greyish brown context and hymenophoral trama, smaller pores, [(6–)7–8/mm, 88–112 µm diam], and wider, distinctly more globose basidiospores (3.8–5.3 µm wide).

P. subdendrohyphidia (Decock 2001a) and *P. djaensis* (Decock & Mossebo 2002), both occurring in the DBR, differ in some characteristics. *Perenniporia subdendrohyphidia* has a white pore surface (fig. 5) but develops much smaller basidiomes on twigs or small branches on the ground, without any ferruginous colour. More fundamentally, it has a different vegetative hyphae differentiation, with (almost) unbranched skeletal hyphae having numerous lateral aborted processes (Decock 2001a).

Perenniporia djaensis has larger pores [(2–)3–4/mm], whitish to pale cork coloured, without any reddish colour.
In a phylogenetic perspective, analysis of a *Perenniporia* ITS and LSU DNA sequence dataset, of worldwide origin (>200 specimens, data not shown) showed that, so far, *P. alboferruginea* nests in a clade together with *P. centrali-africana*, an additional undescribed African species known from more open habitat in Senegal and Zimbabwe, and two undescribed species known from Meso-America (Mexico) and the Caribbean (Cuba). However, for the time being, DNA data are still lacking for many *Perenniporia* species impeding any sound phylogenetic conclusions.

Additional collections of poorly known species in the DBR

About ten years ago, two species of *Perenniporia* were reported from the DBR (Núñez & Daniëls 1999). Currently, seven species are known from the area, viz., in addition to *P. alboferruginea: P. centrali-africana, P. djaensis, P. inflexibilis* (Berk.) Ryvarden, *P. latissima* (Bres.) Ryvarden, *P. subdendrohyphidia*, and *P. tephropora* (Mont.) Ryvarden. *Perenniporia alboferruginea* and *P. subdendrohyphidia* are so far known only from the DBR.

Perenniporia djaensis Decock & Mossebo (Decock & Mossebo 2002: 55).

The species was originally described from the DBR. It has been re-collected at several occasions in the DBR, at the mount ‘Kalè’, near Yaoundé, and at two localities in Gabon, viz. the Sibang Arboretum (Prov. Estuaire, near Libreville) and Ipassa Makokou Biosphere Reserve (Prov. Ogooué-Ivindo). Fig. 4.

Specimens examined – Cameroon. East Province: Dja Biosphere Reserve, Ekom village, near the Ekom local ECOFACT Station, 03°20’44"N 13°02’15"E, alt. 650 m, on a dead fallen branch of an unknown angiosperm, 9 Apr. 2001, C. Decock Dja 24 (MUCL 43385; holotype); ibid., on a dead fallen trunk, 15–20 cm diam., 4 Apr. 2007, C. Decock CA-07-20 (MUCL 49254); ibid., on a small (30 cm diam.) fallen trunk, completely rotten, 5 Apr. 2007, C. Decock CA-07-34 (MUCL 49261); ibid., on a dead fallen branch, 15–20 cm diam., 12 Apr. 2007, C. Decock CA-07-133 (MUCL 49311).

Central Province: Mount ‘Kalè’, near Yaoundé, on a dead fallen branch, 10–15 cm diam., 3 Apr. 2007, C. Decock CA-07-02 (MUCL 49247).

Gabon. Estuaire Province: Libreville, Sibang arboretum, 00°25.058 N 009°29.393 E, alt. 34 m, on a dead fallen trunk (30–40 cm diam.), 21 Mar. 2008, C. Decock & P. Yombiyeni GA-08-271 (MUCL 51272). **Ogooué-Ivindo Province:** Ipassa Makokou Bio-
in the DBR (Decock 2001a, Núñez & Daniëls 1999). This species was not observed in a similar G. dewevrei spot at Ipassa Makokou Biosphere Reserve in Gabon (00°30.160'N – 012°46.781'E, alt. 503 m), during two surveys. A possible host relationship (specificity / preference) of P. subdendrohyphidia / G. dewevrei could be evaluated; but too few data are available for the time being in order to draw any conclusion in this respect. Fig. 5.

Specimens examined – **Cameroon. East Province**: Dja Biosphere Reserve, Somalomo, 3°23'N 12°44'E, 640 m a.s.l., in a Gilbertiodendron dewevrei forest, on bark of a fallen branch, unidentified angiosperm, 27 Jun. 1997, P.P. Daniëls & R. Nnamedoumou (C45Daniëls MA-Fungi 38246; holotype); ibid., 03°21.26' N 12°43.5' E, on a small dead twig on the ground, 4 Apr. 2007, C. Decock CA-07-19 (MUCL 52988).

ACKNOWLEDGMENT

Cony Decock and D. Mossebo are grateful to the Cameroon Minister of Environment and Forestry, Department of Wildlife and Protected Areas, and of Minister of Scientific and Technical Research for having granted research and collection permits for the Dja Biosphere Reserve. Cony Decock and P. Yombiyeni thank also Dr. Ludovic Ngok Banak, Director of the Institute for Research on Tropical Ecology (IRET), Gabon, for granting work and collection permits, and facilities for field research in Gabon. Cony Decock gratefully acknowledges the financial support received from the Belgian State – Belgian Federal Science Policy (contract BCCM C3/10/003) and the “Fonds de la Recherche Fondamentale Collective” (FRFC contract # 2.4515.06). Prudence Yombiyeni gratefully acknowledges the financial support received from the ACP-FORENET project funded by the EU (project grant 9ACP RPR91#1). Dominique Mossebo acknowledges the financial support received from the “Sud Expert Plantes project” (SEP 304).

REFERENCES

Manuscript received 10 Sep. 2010; accepted in revised version 11 Jan. 2011.

Communicating Editor: Bart Van de Vijver.