"Search for heavy neutrinos and W[R] bosons with right-handed couplings in a left-right symmetric model in pp collisions at sqrt(s) = 7 TeV"

CMS Collaboration ; Quertenmont, Loic ; Basegmez, Suzan ; Bruno, Giacomo Luca ; Castello, Roberto ; Ceadr, Ludivine ; Delaere, Christophe ; Du Pree, Tristan ; Favart, Denis ; Forthomme, Laurent ; Giammanco, Andrea ; Hollar, Jonathan ; Lemaître, Vincent ; Liao, Junhui ; Militaru, Otilia ; Nuttens, Claude ; Pagano, Davide ; Pin, Arnaud ; Piotrzkowski, Krzysztof ; Vizan Garcia, Jesús Manuel

ABSTRACT

Results are presented from a search for heavy, right-handed muon neutrinos, Nμ, and right-handed WR bosons, which arise in the left-right symmetric extensions of the standard model. The analysis is based on a 5.0 fb-1 sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS detector at the Large Hadron Collider. No evidence is observed for an excess of events over the standard model expectation. For models with exact left-right symmetry, heavy right-handed neutrinos are excluded at 95% confidence level for a range of neutrino masses below the WR mass, dependent on the value of MWR. The excluded region in the two-dimensional (MWR, MNμ) mass plane extends to MWR=2.5 TeV.

CITE THIS VERSION

CMS Collaboration ; Quertenmont, Loic ; Basegmez, Suzan ; Bruno, Giacomo Luca ; Castello, Roberto ; et. al. Search for heavy neutrinos and W[R] bosons with right-handed couplings in a left-right symmetric model in pp collisions at sqrt(s) = 7 TeV. In: Physical Review Letters, Vol. 109, no.26, p. 261802 (2012) http://hdl.handle.net/2078.1/131317 -- DOI : 10.1103/PhysRevLett.109.261802
Search for Heavy Neutrinos and W_R Bosons with Right-Handed Couplings in a Left-Right Symmetric Model in pp Collisions at $\sqrt{s} = 7$ TeV

S. Chatrchyan et al.*
(CMS Collaboration)
(Received 8 October 2012; published 27 December 2012)

Results are presented from a search for heavy, right-handed muon neutrinos, N_μ, and right-handed W_R bosons, which arise in the left-right symmetric extensions of the standard model. The analysis is based on a 5.0 fb$^{-1}$ sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS detector at the Large Hadron Collider. No evidence is observed for an excess of events over the standard model expectation. For models with exact left-right symmetry, heavy right-handed neutrinos are excluded at 95% confidence level for a range of neutrino masses below the W_R mass, dependent on the value of M_{W_R}. The excluded region in the two-dimensional (M_{W_R}, M_{N_μ}) mass plane extends to $M_{W_R} = 2.5$ TeV.

DOI: 10.1103/PhysRevLett.109.261802 PACS numbers: 13.85.Rm, 12.60.Cn, 14.60.St

The maximal violation of parity conservation is a prominent feature of neutrino interactions that is included in the standard model (SM) in terms of purely left-handed couplings to the W boson. In addition, the observation of neutrino oscillations (see e.g. [1]), together with direct limits on neutrino masses [2], has demonstrated that neutrinos have tiny but nonvanishing masses, suggesting a distinct origin from the masses of the quarks and leptons.

The left-right (LR) symmetric extension of the standard model [3–6] provides a possible explanation for neutrino mass through the seesaw mechanism [7]. The LR symmetry is spontaneously broken at a multi-TeV mass scale, leading to parity violation in weak interactions as described by the SM. By introducing a right-handed SU(2) symmetry group, the LR model incorporates heavy right-handed Majorana neutrinos ($N_\ell, \ell = e, \mu, \tau$) as well as additional charged (W^\pm_R) and neutral (Z_R) gauge bosons.

We search for the production of W_R bosons from proton-proton collisions at the Large Hadron Collider (LHC). The W_R boson is assumed to decay to a muon and to a right-handed neutrino N_μ, which subsequently decays to produce a second muon together with a virtual W_R. If the N_μ is a Majorana particle as predicted in the LR model, the two final state muons may have the same sign. The virtual W_R decays to a pair of quarks which hadronize into jets (J), resulting in a final state with two muons and two jets, $W_R \rightarrow \mu_1 N_\mu \rightarrow \mu_1 \mu_2 W_R' \rightarrow \mu_1 \mu_2 q q' \rightarrow \mu_1 \mu_2 j_1 j_2$.

The search presented in this Letter is characterized by the W_R and N_μ masses, M_{W_R} and M_{N_μ}, which are allowed to vary independently. Although $M_{N_\mu} > M_{W_R}$ is allowed, it is not considered in this analysis. The branching fraction for $W_R \rightarrow \mu N_\mu$ depends on the number of heavy neutrino flavors that are accessible at LHC energies. To simplify the interpretation of the results, N_μ is assumed to be the only heavy neutrino flavor light enough to contribute significantly to the W_R decay width. CMS recently performed a search for heavy Majorana neutrinos in the final state containing two jets and two same-sign electrons or muons and set limits on the coupling between such a neutrino and the left-handed W of the SM as a function of M_{N_μ} [8], while this analysis considers on-shell production of a right-handed W_R boson. No charge requirements are imposed on the final state muons in this analysis.

For given W_R and N_μ masses, the signal cross section can be predicted from the assumed value of the coupling constant g_R, which denotes the strength of the gauge interactions of W^\pm_R bosons. Strict left-right symmetry implies that g_R is equal to the (left-handed) weak interaction coupling strength g_L at M_{W_R}, which will be assumed throughout this Letter. Consequently, the W_R production cross section can be calculated using the left-handed W model [10,11]. As an additional simplification, the left-right boson and lepton mixing angles are assumed to be small.

Estimates based on K_L-K_S mixing results imply a theoretical lower limit of $M_{W_R} \gtrsim 2.5$ TeV [12,13]. Searches for $W_R \rightarrow t b$ decays at the Tevatron [14–16] and at the LHC [17,18] exclude W_R masses below 1.85 TeV. An ATLAS search for $W_R \rightarrow \ell N_\ell$ using similar model assumptions as those in this Letter, but allowing W_R decays to both N_ℓ and N_μ, excluded a region in the two-dimensional parameter (M_{W_R}, M_{N_ℓ}) space extending to nearly $M_{W_R} = 2.5$ TeV [19].

The analysis is based on a 5.0 fb$^{-1}$ sample of proton-proton collision data at a center-of-mass energy of 7 TeV, collected by the Compact Muon Solenoid (CMS) detector [20] at the LHC. The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing a field of 3.8 T. Within the field volume are the

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
silicon pixel and strip trackers, the lead-tungstate crystal electromagnetic calorimeter, and the brass and scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel return yoke, with detection planes made of three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. The CMS trigger system, composed of custom hardware processors at the first level followed by a processor farm at the next level, events $O(100 \text{ Hz})$ of the most interesting events. The events used in this analysis were collected with single-muon triggers whose p_T thresholds ranged from 24 GeV to 40 GeV, depending on the instantaneous luminosity.

The $W_R \rightarrow \mu N_\mu$ signal samples are generated using PYTHIA 6.4.24 [21], which includes the LR symmetric model with the standard assumptions mentioned previously, with CTEQ6L1 parton distribution functions [22]. We also study SM background processes using simulated samples: $t\bar{t}$ and single-top (both generated using POWHEG [23]), W and Drell-Yan production in association with jets (SHERPA [24]), and diboson production (PYTHIA). Generated events pass through the full CMS detector simulation based on GEANT [25].

The muon identification strategy is based on both the muon detectors and the inner tracker, described in Ref. [26]. At least one of the two muons used to define the W_R candidate is required to be matched to a muon candidate found by the trigger, and both muons are required to satisfy the tight identification criteria discussed in Ref. [27]. The muon identification requirements ensure good consistency between the measurements of the muon detector and the inner tracker, and suppress muons from decay-in-flight of hadrons as well as from shower punch-through. Nonisolated muon backgrounds are controlled by computing the sum of the transverse momentum of tracks within a cone about the muon direction of $\Delta R < 0.3$, with $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, given the azimuthal angle ϕ and $\eta = -\ln[\tan(\theta/2)]$, where θ is the polar angle with respect to the beam direction. The final p_T sum must be less than 10% of the muon transverse momentum.

Jets are reconstructed by forming clusters of charged and neutral hadrons, photons, and leptons that are first reconstructed based on the CMS particle-flow technique [28], using the anti-k_T clustering algorithm [29] with a radius parameter $R = 0.5$. Energy deposits in the calorimeter with characteristics that match those of noise or beam halo tracks are identified, and events are rejected if either of the two highest-p_T jet candidates was produced by such energy deposits. To suppress backgrounds from heavy-flavor-quark decays, any muon is rejected if found near a jet, with $\Delta R(\mu, j) < 0.5$.

In approximately 95% of simulated signal event samples, the W_R final state decay products are the highest p_T muons and jets in the event. $W_R \rightarrow \mu N_\mu$ candidates are thus formed from the two highest-p_T muons and the two highest-p_T jets in the event. As the initial two-body decay $W_R \rightarrow \mu N_\mu$ tends to produce a high-momentum muon, events are selected in which the leading muon has $p_T > 60$ GeV and the subleading muon has $p_T > 30$ GeV. A minimum transverse momentum requirement of 40 GeV is imposed on the jet candidates after correcting for the effects of the extra pp collisions in the event and the jet energy response of the detector. Backgrounds are suppressed by requiring the invariant mass of the dimuon system $M_{\mu\mu} > 200$ GeV and the four-object mass $M_{\mu\mu jj} > 600$ GeV.

The signal acceptance is found to be typically near 80% at $M_{N_\mu} \sim M_{W_R}/2$ and decreases rapidly for $M_{N_\mu} \lesssim 0.10M_{W_R}$. At low neutrino mass, the $N_\mu \rightarrow \mu jj$ decay tends to overlap due to the boost from W_R decay, and the two jets may not be distinguishable or the muon from N_μ decay may be too close to a jet. For W_R signal events which meet the kinematic acceptance requirements, the efficiency to reconstruct the four high-p_T objects using the CMS detector ranges between 75% and 80% as a function of W_R and N_μ mass.

After the muon requirements are applied, the SM backgrounds for $W_R \rightarrow \mu N_\mu$ consist primarily of events from processes with two isolated high-p_T muons, namely $t\bar{t} \rightarrow bW + \bar{b}W^*$ and $Z +$ jets processes. The impact of the selection criteria on background processes is shown in Table I.

The $t\bar{t}$ background contribution is estimated using a control sample of $e\mu jj$ events reconstructed in data and simulation. This sample is dominated by $t\bar{t}$ events, with small contributions from other SM processes estimated using simulation. The simulated $t\bar{t}$ background

<table>
<thead>
<tr>
<th>Selection stage</th>
<th>Data</th>
<th>Signal</th>
<th>Total bkgd</th>
<th>$t\bar{t}$</th>
<th>$Z +$ jets</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two muons, two jets</td>
<td>21 769</td>
<td>50</td>
<td>21 061</td>
<td>1603</td>
<td>19 136</td>
<td>322</td>
</tr>
<tr>
<td>$\mu_1 p_T > 60$ GeV</td>
<td>13 328</td>
<td>50</td>
<td>12 862</td>
<td>1106</td>
<td>11 531</td>
<td>225</td>
</tr>
<tr>
<td>$M_{\mu\mu} > 200$ GeV</td>
<td>365</td>
<td>48</td>
<td>341</td>
<td>211</td>
<td>116</td>
<td>14</td>
</tr>
<tr>
<td>$M_{\mu\mu jj} > 600$ GeV</td>
<td>164</td>
<td>48 ± 13</td>
<td>152 ± 22</td>
<td>81 ± 18</td>
<td>65 ± 9</td>
<td>6 ± 3</td>
</tr>
</tbody>
</table>
contribution is scaled to data using events satisfying $M_{\mu\mu} > 200$ GeV, which is equivalent to the third selection stage in Table I. The scale factor for the simulated $t\bar{t}$ sample, relative to the $t\bar{t}$ cross section measured by CMS [30], is 0.97 ± 0.06. The uncertainty on this scale factor reflects the number of events in data with $M_{\text{lep}} > 200$ GeV. Applying this scale factor to the $t\bar{t}$ simulation, the $M_{\mu\mu}$ distributions in data and simulation are found to be in agreement. This scale factor is applied to the simulated $t\bar{t}$ event sample at all stages of selection in order to estimate the expected number of $pp \rightarrow t\bar{t} + X$ events that survive successive selection criteria.

The $Z +$ jets background contribution is estimated from $Z \rightarrow \mu\mu$ decays reconstructed in simulation and data. The simulated $Z +$ jets background contribution is normalized to data using events in the dimuon mass region $60 \text{ GeV} < M_{\mu\mu} < 120 \text{ GeV}$ after requiring $p_T > 60 \text{ GeV}$ as indicated in Table I. Accounting for other SM background processes, the simulated $Z +$ jets scale factor is 1.43 ± 0.01 relative to inclusive next-to-next-to-leading order calculations. The uncertainty on this value reflects the number of events from data with $60 \text{ GeV} < M_{\mu\mu} < 120 \text{ GeV}$. After rescaling the $Z +$ jets simulation, the shape of the $M_{\mu\mu}$ distribution for data is in agreement with simulation for $M_{\mu\mu} > 60 \text{ GeV}$.

After all selection criteria are applied, the $t\bar{t}$ and $Z +$ jets processes dominate the total SM background contribution. Other SM processes, mostly diboson and single top, comprise less than 5% of the total background and their contributions are estimated from simulation. Background from $W +$ jets processes, also estimated from simulation, is negligible. The background contribution from multijet processes is estimated using control samples from data and is roughly 0.1% of the total SM background after all selection requirements are applied.

The observed and expected number of events surviving the selections are summarized in Table I. The yields reflect the number of background events surviving each selection stage, with normalization factors obtained from control sample studies ($t\bar{t}, Z +$ jets, and multijet processes) or taken directly from simulation. The data are found to be in agreement with SM expectations.

The reconstructed four-object mass in data and simulation is used to estimate limits on W_R production. The $M_{\mu\mu jj}$ distribution for $W_R \rightarrow \mu\mu jj$ signal events, for each W_R mass assumption, is included together with the SM background distributions to search for evidence of W_R production.

The dominant uncertainty related to $W_R \rightarrow \mu N_\mu$ production arises from the variation in the predicted signal production cross section as a result of the uncertainties in the parton distribution functions (PDFs) of the proton. This uncertainty varies between 4% and 22%, depending on the W_R mass hypothesis, following the PDF4LHC prescriptions [31] for the CT10 [32] and MSTW2008 [33] PDF sets.

The uncertainties associated with muon reconstruction and identification are determined from $Z \rightarrow \mu^+\mu^-$ events reconstructed in both data and simulation. The size of this uncertainty is about 15% for signal and 5% for background processes.

The shape of each SM background $M_{\mu\mu jj}$ distribution is modeled by an exponential ($e^{a+bM_{\mu\mu}}$) line shape, and the background contributions as a function of mass are determined from the result of fits applied to each background type: $t\bar{t}$, $Z +$ jets, and other SM backgrounds. The background uncertainty is dominated by the uncertainty in the background modeling and is computed as a function of $\mu\mu jj$ mass.

The uncertainty in the exponential fit is taken as the uncertainty due to background modeling. Each background distribution is also fit with an alternative suite of exponential functions to allow for deviations from the assumed shape at high mass. For a given $M_{\mu\mu jj}$ range, we take the maximum of the deviation, relative to the nominal exponential fit, from any alternative fit result as the uncertainty due to background modeling if this deviation exceeds the nominal fit uncertainty.

Uncertainties in the jet energy scale and resolution impact the shape of the signal and background $M_{\mu\mu jj}$ distributions, contributing less than 10% to the signal and background uncertainties. The normalization of the various background samples contributes 5% to the total uncertainty. Muon resolution and trigger efficiency uncertainties, and additional factorization and scale theoretical uncertainties, contribute to the total uncertainty to a lesser extent. The uncertainties in the total number of background events are derived taking into account the relative contribution of all background events after the full event selection, and the correlation of each effect between all background processes.

The total uncertainty for signal and background is summarized in Table I. The $M_{\mu\mu jj}$ distribution for events with $M_{\mu\mu} > 200$ GeV is presented in Fig. 1, which also summarizes the background uncertainty as a function of $M_{\mu\mu jj}$ and demonstrates the dominant background model uncertainty relative to the total background uncertainty.

As no evidence for $W_R \rightarrow \mu N_\mu$ decay is found, limits on W_R production are estimated using a multibin technique based on the ROOSTATS package [34]. The bin width of 200 GeV, comparable to the mass resolution for a reconstructed W_R boson with mass below 2.5 TeV, is chosen for the $M_{\mu\mu jj}$ distributions used to compute the limits. The background inputs to the limit calculation use the results of the exponential fit, while the signal input is taken directly from the $M_{\mu\mu jj}$ distribution for each signal W_R mass assumption. Uncertainties are included as nuisance parameters in the limit calculations. A CL$_S$ limit setting technique [35,36] is used to estimate the 95% confidence level (CL) excluded region as a function of the W_R cross section multiplied by the $W_R \rightarrow \mu jj$ branching fraction.
and W_R mass. The observed and expected limits are found to be in agreement. These results (available in tabular form in the Supplemental Material [37]) can be used for the evaluation of models other than those considered in this Letter.

Limits as a function of W_R mass for a right-handed neutrino with $M_{N_{\mu}} = \frac{1}{2} M_{W_R}$ are presented in Fig. 2. The theoretical expectation in Fig. 2 assumes that only N_{ℓ} contributes to the W_R decay width, as mentioned previously. Assuming degenerate N_{ℓ} ($\ell = e, \mu, \tau$) masses allows $W_R \rightarrow eN_e$ and $W_R \rightarrow \tau N_{\tau}$ decays in addition to $W_R \rightarrow q\bar{q}$ and $W_R \rightarrow \mu N_{\mu}$ and effectively decreases the expected $W_R \rightarrow \mu \mu jj$ production rate by approximately 15%.

For the model considered in this Letter, Fig. 3 indicates the range of excluded N_{μ} masses as a function of W_R mass by comparing the observed (expected) upper limit and the predicted cross section for each mass point. These limits extend to $M_{W_R} = 2.5$ TeV, and exclude a wide range of heavy neutrino masses for W_R mass assumptions below this maximal value.

In summary, we have presented a search for the right-handed heavy muon neutrinos (N_{μ}) and bosons (W_R) of the left-right symmetric extension of the standard model. We find that our data sample is in agreement with expectations from standard model processes and therefore set a limit on the W_R and N_{μ} masses. For models with exact left-right symmetry (the same coupling to the right-handed and left-handed sectors), we exclude heavy right-handed neutrinos for a range of $M_{N_{\mu}} < M_{W_R}$, dependent on the value of M_{W_R}. For these models, the excluded region in the two-dimensional parameter space $(M_{W_R}, M_{N_{\mu}})$ extends to $M_{W_R} = 2.5$ TeV.

FIG. 1 (color online). Distribution of the invariant mass $M_{\mu\mu jj}$ for events in data (points with error bars) with $M_{\mu\mu} > 200$ GeV and for simulated background contributions (hatched stacked histograms). The signal mass point $M_{W_R} = 1800$ GeV, $M_{N_{\mu}} = 1000$ GeV, is included for comparison (open red histogram). The number of events from each background process (and the expected number of signal events) is included in parentheses in the legend. The data are compared to SM expectations in the lower portion of the figure. The total background uncertainty (outer band) and the background uncertainty after neglecting the uncertainty due to background modeling (inner band) are included as a function of $M_{\mu\mu jj}$ for $M_{\mu\mu jj} > 600$ GeV.

FIG. 2 (color online). The 95% confidence level exclusion limit on the W_R production cross section times branching fraction for $W_R \rightarrow \mu \mu jj$ as a function of M_{W_R} for $M_{N_{\mu}} = \frac{1}{2} M_{W_R}$. This limit is compared to expectations given the theoretical model described in the text.

FIG. 3 (color online). The 95% confidence level exclusion region in the $(M_{W_R}, M_{N_{\mu}})$ plane, assuming the model described in the text. The Tevatron exclusion region for W_R production [16] is included in the figure.
These results represent the most sensitive limits to date on W_R production assuming a single heavy neutrino flavor contributes significantly to the W_R decay width.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF and CPAN (Spain); Swiss Funding MON, RosAtom, RAS, and RFBR (Russia); MSTD (Pakistan); MSHE and NSC (Poland); FCT (Portugal); UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Lithuania); CINVESTA V , CONACYT, SEP, and (Ireland); INFN (Italy); NRF and WCU (Korea); LAS NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI DFG, and HGF (Germany); GSRT (Greece); OTKA and (Finland); CEA and CNRS/IN2P3 (France); BMBF, Academy of Finland, MEC, and HIP RPF (Cyprus); MoER SF0690030s09 and ERDF (China); COLCIENCIAS (Colombia); MSES (Croatia); (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF and CPAN (Spain); Swiss Funding MON, RosAtom, RAS, and RFBR (Russia); MSTD (Pakistan); MSHE and NSC (Poland); FCT (Portugal); UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Lithuania); CINVESTA V , CONACYT, SEP, and (Ireland); INFN (Italy); NRF and WCU (Korea); LAS NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI DFG, and HGF (Germany); GSRT (Greece); OTKA and (Finland); CEA and CNRS/IN2P3 (France); BMBF, Academy of Finland, MEC, and HIP RPF (Cyprus); MoER SF0690030s09 and ERDF (China); COLCIENCIAS (Colombia); MSES (Croatia); (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); and DOE and NSF (USA).

[37] See the Supplemental Material http://link.aps.org/ supplemental/10.1103/PhysRevLett.109.261802 for a tabu-

S. Chatrchyan,1 V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 E. Aguilo,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2 M. Friedl,2 R. Frühwirth,2 V. M. Ghete,2 J. Hammer,2 N. Hörmann,2 J. Hrubec,2 M. Jeitler,2 W. Kiesenhofer,2 V. Knížný,2 M. Krammer,2 I. Krätschmer,2 D. Liko,2 I. Mikulec,2 M. Pernicka,2 B. Rahbaran,2 C. Rohringer,2 H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2 A. Taurok,2
104 Cukurova University, Adana, Turkey
105 Middle East Technical University, Physics Department, Ankara, Turkey
106 Bogazici University, Istanbul, Turkey
107 Istanbul Technical University, Istanbul, Turkey
108 National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
109 University of Bristol, Bristol, United Kingdom
110 Rutherford Appleton Laboratory, Didcot, United Kingdom
111 Imperial College, London, United Kingdom
112 Brunel University, Uxbridge, United Kingdom
113 Baylor University, Waco, Texas, USA
114 The University of Alabama, Tuscaloosa, Alabama, USA
115 Boston University, Boston, Massachusetts, USA
116 Brown University, Providence, Rhode Island, USA
117 University of California, Davis, Davis, California, USA
118 University of California, Los Angeles, Los Angeles, California, USA
119 University of California, Riverside, Riverside, California, USA
120 University of California, San Diego, La Jolla, California, USA
121 University of California, Santa Barbara, Santa Barbara, California, USA
122 California Institute of Technology, Pasadena, California, USA
123 Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
124 University of Colorado at Boulder, Boulder, Colorado, USA
125 Cornell University, Ithaca, New York, USA
126 Fairfield University, Fairfield, Connecticut, USA
127 Fermi National Accelerator Laboratory, Batavia, Illinois, USA
128 University of Florida, Gainesville, Florida, USA
129 Florida International University, Miami, Florida, USA
130 Florida State University, Tallahassee, Florida, USA
131 Florida Institute of Technology, Melbourne, Florida, USA
132 University of Illinois at Chicago (UIC), Chicago, Illinois, USA
133 The University of Iowa, Iowa City, Iowa, USA
134 Johns Hopkins University, Baltimore, Maryland, USA
135 The University of Kansas, Lawrence, Kansas, USA
136 Kansas State University, Manhattan, Kansas, USA
137 Lawrence Livermore National Laboratory, Livermore, California, USA
138 University of Maryland, College Park, Maryland, USA
139 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
140 University of Minnesota, Minneapolis, Minnesota, USA
141 University of Mississippi, Oxford, Mississippi, USA
142 University of Nebraska-Lincoln, Lincoln, Nebraska, USA
143 State University of New York at Buffalo, Buffalo, New York, USA
144 Northeastern University, Boston, Massachusetts, USA
145 Northwestern University, Evanston, Illinois, USA
146 University of Notre Dame, Notre Dame, Indiana, USA
147 The Ohio State University, Columbus, Ohio, USA
148 Princeton University, Princeton, New Jersey, USA
149 University of Puerto Rico, Mayaguez, Puerto Rico, USA
150 Purdue University, West Lafayette, Indiana, USA
151 Purdue University Calumet, Hammond, Indiana, USA
152 Rice University, Houston, Texas, USA
153 University of Rochester, Rochester, New York, USA
154 The Rockefeller University, New York, New York, USA
155 Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
156 University of Tennessee, Knoxville, Tennessee, USA
157 Texas A&M University, College Station, Texas, USA
158 Texas Tech University, Lubbock, Texas, USA
159 Vanderbilt University, Nashville, Tennessee, USA
160 University of Virginia, Charlottesville, Virginia, USA
161 Wayne State University, Detroit, Michigan, USA
162 University of Wisconsin, Madison, Wisconsin, USA
Now at University of Edinburgh, Scotland, Edinburgh, United Kingdom.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at Argonne National Laboratory, Argonne, Illinois, USA.
Also at Erzincan University, Erzincan, Turkey.
Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
Also at Kyungpook National University, Daegu, Korea.