"Nonlinear model predictive control for optimal discontinuous drug delivery"

Hudon, Nicolas ; Perrier, Michel ; Guay, Martin ; Dochain, Denis

CITE THIS VERSION

Hudon, Nicolas ; Perrier, Michel ; Guay, Martin ; Dochain, Denis. Nonlinear model predictive control for optimal discontinuous drug delivery. Proc. ADCHEM'06 (Gramado, Brasil, du April 2 au April 5). In: IFAC Proceedings, Vol. 39, no. 2, p. 527-532 http://hdl.handle.net/2078.1/89618

DIAL is an institutional repository for the deposit and dissemination of scientific documents from UCLouvain members. Usage of this document for profit or commercial purposes is strictly prohibited. User agrees to respect copyright about this document, mainly text integrity and source mention. Full content of copyright policy is available at Copyright policy

Available at: http://hdl.handle.net/2078.1/89618
NONLINEAR MODEL PREDICTIVE CONTROL
FOR OPTIMAL DISCONTINUOUS DRUG
DELIVERY

Nicolas Hudon ∗ Martin Guay ∗,† Michel Perrier **
Denis Dochain ***

Abstract: This paper exploits a gradient-based model predictive control technique
to solve an optimal switching time problem over periodic orbits. Drug delivery
scheduling applications, where it is desired to maximize the averaged effect of a
drug over time, motivate the study for this type of online optimization problem.
The objective is to find the optimal time-switching policy between full treatment
and no treatment periods. It is shown, by a numerical application to a simple drug
delivery problem, that the resulting predictive algorithm drives the system to the
optimal periodic orbit in the state space.

Keywords: Model Predictive Control, Time-switching Control, Optimal Drug
Delivery, Periodic Orbits.

1. INTRODUCTION

The usual task of nonlinear model predictive control is to find and track the steady-state optimum
of a cost functional, subject to the system dynamics and state constraints. In some applications,
however, a steady-state optimization may not be feasible nor optimal with respect to a given mea-
sure. For example, as outlined in (Varigonda et al., 2004a; Varigonda et al., 2004b), the steady-
state optimization of some drug delivery problems yield optimum conditions that do not lead to ther-
apeutic drug treatments. From a practical point of view, optimal drug delivery problems can be seen
as optimal time-switching problems, alternating full treatment periods and no treatment peri-
ods. For HIV control, optimal scheduling policies were proposed in (Zurakowski and Teel, 2003; Zu-
rakowski et al., 2004). In (Guay et al., 2005), differential flatness was used to parameterize the
trajectories of the system and to compute, in real-time, optimal periodic trajectories using an
extremum-seeking method. Since the problem is periodic by nature, we will study it as an optimal
control problem over periodic orbits.

In this paper, the problem of optimal drug delivery by periodic injections is solved as an op-
timal time-switching control problem. Each control cycle includes periods of treatment, or short
input impulses, and periods with no treatment. The control is parameterized by a time-switching
parameter that should converge to the optimal time interval length between full treatment peri-
ods. This problem was treated in the linear case by (Yastreboff, 1969) and more recently us-
ing heuristics in (Grognard and Sepulchre, 2001). Asymptotic stabilization for linear output feed-
back systems was studied in (Allwright et al., 2005). Gradient-based algorithm to solve an anal-

1 Corresponding Author guaym@chee.queensu.ca
ogous problem was also presented in (Egerstedt et al., 2003).

In this paper, we use a nonlinear model predictive approach, recently developed in (DeHaan and Guay, 2005) that generalize the approach given by (Magni and Scattolini, 2004). The key idea is to see the optimal control moves (here parameterized by switching-time between two control values) as unknown parameters that can be identified on-line via the model predictive control algorithm. The method relies on discrete transitions of the control action based on real-time evolution of those parameters. We allow maximization calculations throughout the entire sampling interval and update the control parameters at a fixed sampling time. The assumptions needed for this implementation relax the flatness assumption used in (Guay et al., 2005) and (Varigonda et al., 2004b).

The paper is divided as follows. In Section 2, we formulate the optimization problem and parameterize the single input to the system using time at which control switches occur as the control parameter. In Section 3, we present the nonlinear model predictive algorithm based on (DeHaan and Guay, 2005) and discuss stability of the closed loop scheme. Numerical application of the resulting law to the drug delivery problem from (Varigonda et al., 2004b) is presented in Section 4. Conclusions and future investigations are outlined in Section 5.

2. CONTROL PROBLEM FORMULATION

We consider a single input nonlinear dynamical system of the form:

$$\dot{x} = f(x, u)$$

where $x \in X \subset \mathbb{R}^n$ are the states of the system, $u \in U = \{u_{\text{min}}, u_{\text{max}}\}$ is the control input and $f : X \times U \rightarrow \mathbb{R}^n$ is a sufficiently smooth function. We assume that X is a compact subset of \mathbb{R}^n. We also assume that the user-defined objective functional is a convex differentiable function on X. The control design objective is to optimize a cost functional given by

$$J = \frac{1}{T} \int_{t}^{t+T} L(x(\tau)) d\tau$$

with respect to $u(\tau)$ for $\tau \in [t, t + T]$, where T is the fixed period of the system, approximated here as the length of the horizon considered later for the optimization problem. We seek to maximize J subject to the system dynamics (1) and inequality constraints

$$x_{\text{min}} \leq x(\tau) \leq x_{\text{max}}, \quad \tau \in [t, t + T]$$

We consider the problem of finding an optimal switching time between two known values of the control inputs, i.e. u_{min} and u_{max}. To represent this type of behavior, we parameterize the control $u(\tau)$ as a finite sum of Heaviside functions $u(\theta)$:

$$u(\theta) = \sum_{i=1}^{m} [H(\tau - i\theta) - H(\tau - i\theta - \epsilon)]$$

where θ is the switching time parameter. This parameter will be determined on-line by the optimization algorithm. The parameter ϵ is the known duration of each full-treatment period. In practice, m would be chosen such that $m \cdot \theta < T$ with a meaningful prediction horizon, T. Other parameterizations could have been considered, however Heaviside functions clearly represent the physical application of discontinuous drug infusion. Another advantage here is that the calculations will be greatly simplified using some elementary properties of Heaviside functions and Dirac delta operator. We now state the following assumption:

Assumption 2.1. The unforced dynamics (1) with $u(t) \equiv u_{\text{min}} \equiv 0$ is stable.

This assumption is needed to ensure stability of the close loop dynamics as discuss in the next Section.

3. NONLINEAR MODEL PREDICTIVE CONTROL

3.1 Interior-Point Method

In order to find the optimal control policy that steers the system (1) to the periodic orbit maximizing the cost functional (2), we have to encode the state constraints (3). We propose log-barrier functions (Nash and Sofer, 1996). The cost functional (2) becomes the following:

$$J_c = \frac{1}{T} \int_{t}^{t+T} (L(x(\tau))) + R_1(x(\tau)) + R_2(x(\tau))) d\tau$$

where

$$R_1(x(\tau)) = \sum_{j=1}^{n} \mu_{1,j} \log(x_j(\tau) - x_{j,\text{max}} - \epsilon_{1,j})$$

$$R_2(x(\tau)) = \sum_{j=1}^{n} \mu_{2,j} \log(x_j,\text{min} - x_j(\tau) + \epsilon_{2,j})$$

and $\mu_{1,j} > 0$, $\epsilon_{j} > 0$, $j = 1, \ldots, n$, are tuning constants for the barrier functions. Given that the functional is convex with respect to the unknown control parameter θ, we can rely on the first order conditions for optimality, given by
\[
\n\nabla_\theta J_c(\theta^*) = 0
\]

where \(\nabla_\theta J_c(\theta^*) \) is the gradient of the functional \(J_c \) with respect to \(\theta \) evaluated at the minimizer \(\theta^* \). From the definition of the cost functional (5), this gradient is expressed as

\[
\nabla_\theta J_c(\theta) = \frac{1}{T} \int_{t_1}^{t_1+T} \Gamma_1 \frac{\partial x}{\partial \theta} \frac{\partial u}{\partial \theta} dt
\]

where \(\Gamma_1 \) is the n-row vector defined by

\[
\Gamma_1 = \left(\frac{\partial L}{\partial x} + \frac{\partial R_1}{\partial x} + \frac{\partial R_2}{\partial x} \right)^T
\]

with each \(j \)-th-element, \(j = 1, \ldots, n \), is given by

\[
\Gamma_{1,j} = \frac{\partial L}{\partial x_j} + \frac{\mu_1,j}{x_j(\tau) - x_{j,\max} - \epsilon_{1,j}} - \frac{\mu_2,j}{x_{j,\min} - x(\tau) + \epsilon_{2,j}}
\]

The first derivative of \(x \) with respect to \(u \) can be evaluated along the trajectories of the following tractable dynamics

\[
\frac{d}{dt} \left(\frac{\partial x}{\partial u} \right) = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial u}
\]

By the parametrization (4) of \(u(\theta) \), we have:

\[
\frac{\partial u}{\partial \theta} = - \sum_{i=1}^{N} i \left(\delta(t - i\theta) - \delta(t - i\theta - \varepsilon) \right)
\]

where \(\delta(\cdot) \) is the Dirac delta function. By definition,

\[
\int_{\Lambda} f(x) \delta(x-a) dx = f(a), \quad \text{if} \ a \in \Lambda
\]

Therefore, we can rewrite (7) as

\[
\nabla_\theta J_c(\theta) = \frac{1}{T} \sum_{i=1}^{N} i \left(\Gamma_1 \frac{\partial x}{\partial u} \right)_{\theta^*}^{(i+1)^\ddagger}
\]

where \([F(\cdot)]_{\theta}^{(i)} = F(b) - F(a) \). Equations (13) shows the dependence of the cost functional \(J_c \) on the control parameter \(\theta \). We will use this information in the next section to derive a stable updating law for \(\theta \). The main advantage of the proposed parametrization is that the cost function gradient to evaluate is now given by a finite sum of trackable terms.

3.2 Parameter Update Law

In this section, we apply the nonlinear model predictive control procedure proposed in (DeHaan and Guay, 2005). The idea is to assume that we can compute the model prediction instantaneously solving the closed-loop dynamics:

\[
\begin{align*}
\dot{x} &= f(x, u(\theta)) \\
\dot{\theta} &= \Psi(t, x)
\end{align*}
\]

The continuous update law \(\Psi(t, x) \) must be chosen such that \(\langle \nabla_\theta J_c, \Psi(t, x) \rangle \leq 0 \). In (DeHaan and Guay, 2005), one way to achieve this criterion is to use a general descent continuous update law:

\[
\begin{align*}
\Psi(t, x) &= \text{Proj}\{\dot{\theta}(t, x)\} \\
\dot{\theta}(t, x) &= \kappa \nabla_\theta J_c
\end{align*}
\]

In the present paper, \(\Upsilon \) is set to \(I \) (gradient-based method). The projection algorithm \(\text{Proj}(\cdot) \) is designed to ensure that the value of the parameter remains in the convex set

\[
\Omega_w = \{ \theta \in \mathbb{R} : |\theta| \leq w_m \}
\]

This algorithm is given by

\[
\dot{\theta} = \text{Proj}(\theta, \vartheta) = \left\{ \begin{array}{ll}
\vartheta & \text{if } |\vartheta| < w_m \\
|\vartheta| & \text{or } |\vartheta| = w_m \\
\vartheta - \lambda \frac{\nabla P(\theta)\nabla P(\theta)^T}{\Vert \nabla P(\theta) \Vert_2^2} & \text{otherwise}
\end{array} \right.
\]

where \(\vartheta = \Theta^2 - w_m \leq 0 \), \(\lambda \) is a positive constant gain for the projection algorithm. General properties of this projection algorithm are presented in (Krstic et al., 1995) and (Pomet and Praly, 1992).

3.3 Convergence to the Optimal Cycle

Following the extremum seeking procedure proposed in (Guay and Zhang, 2003), we use the following Lyapunov function:

\[
V = \frac{1}{2} |J_c(\theta)|^2 \geq 0
\]

The derivative of \(V \) with respect to time is

\[
\dot{V} = |J_c(\theta)| \left(\nabla_\theta J_c(\theta) \dot{\theta} + \Gamma_1(T(t) - \Gamma_1(t)) \right)
\]

It is possible to show by a simple Lyapunov argument that the convergence of the algorithm to the optimal cycle is ensured if \(J_c \to 0 \) as \(t \to 0 \). To achieve stability, the open-loop dynamics must be such that:

\[
\frac{\partial I_1}{\partial x} f(x, 0) < 0
\]

Since by assumption the open-loop dynamics are stable for \(u \equiv 0 \), the last condition is met for \(\frac{\partial I_1}{\partial x} > 0 \). Therefore, the optimum is reached when the cost stabilizes to a constant value, that is
when we reach the optimal closed orbit. Since the dynamic for \(\theta \) is stable, the algorithm ensures convergence to the optimal periodic orbit whenever \(\theta \) reaches is optimal value.

3.4 Receding Horizon Implementation

To implement the algorithm derived above in real-time, we need to evaluate on-line sensitivity information of the state trajectories with respect to the control. Moreover, to evaluate the gradient, we need the sensitivity of those equations with respect to time, as expressed in the equations (10). Following ideas presented in (DeHaan and Guay, 2005), the proposed method uses the simulation of the system (1) with \(u \) generated by a fix switching time \(\tau \) over the receding horizon \(\tau \in [t, t + T] \), corresponding to one assumed period of the system. This enables us to generate the gradient information and to update \(\theta \) according to equation (14). The new value of the parameter \(\theta \) is changed at the end of the cycle to generate another free dynamic of the system.

To summarize the algorithm:

1. Assume fixed switching time \(\theta \) and prediction horizon \(T \).
2. Simulate the system with discontinuous inputs for \(t \) to \(t + T \).
3. Compute the gradient \(\nabla_{\theta} J_e(\theta) \) as the finite sum 13.
4. At time \(t = \theta \), update \(\theta \) and the horizon \(T \).

Results from (DeHaan and Guay, 2005) show a computational advantage of this method over existing receding horizon techniques. We now turn our attention to a simple numerical example to show the potential of the method.

4. APPLICATION TO DRUG DELIVERY

To illustrate, we apply the algorithm developed in Section 3 to a drug delivery problem studied in (Guay et al., 2005; Varigonda et al., 2004b). The objective is to maximize the time average of some indicator function of the drug concentration, \(c \) and the drug antagonist concentration, \(a \):

\[
J = \frac{1}{T} \int_0^T I(E(c, a))d\tau
\]

where the indicator function is defined as

\[
I(E) = \frac{(E/E_1)^{\gamma}}{[1 + (E/E_1)^{\gamma}][1 + (E/E_2)^{2\gamma}]}
\]

and the drug effect \(E \) is

\[
E(c, a) = \frac{c}{(1 + c)(1 + a/a^*)}
\]

where \(a^* \) is the relative potency of the antagonist. The prescribed range of the effect of the drug during the therapy is enforce by the parameters \(E_1 \) and \(E_2 \) in the indicator function. To be effective, the therapy must lie within the interval \([E_1, E_2]\) during the cycle. The parameter \(\gamma \) is used to increase the sensitivity of the indicator to changes in the drug effect. The non-dimensional linear dynamics of the systems are given by

\[
\dot{c} = -c + u
\]

\[
\dot{a} = K_a(c - a)
\]

with \(K_a \), the rate constant of the antagonist elimination. We constrain the states with \(0 \leq a \leq 1 \) and \(0 \leq c \leq 1 \). In this region, the unforced dynamics converges to the origin. The first derivative of \(x \) with respect to \(u \) is given by:

\[
\frac{d}{dt} \left(\frac{dx}{du} \right) = \left(-1 \begin{array}{c} 0 \\ \frac{1}{K_a} - \frac{1}{K_a} \end{array} \right) \left(\frac{dx}{du} \right) + \left(\begin{array}{c} 1 \\ 0 \end{array} \right)
\]

Simulations and control parameters are given in Tables 1 and 2 respectively.

Table 1. Drug Delivery Problem Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_a)</td>
<td>0.1</td>
</tr>
<tr>
<td>(a^*)</td>
<td>1</td>
</tr>
<tr>
<td>(E_1)</td>
<td>0.3</td>
</tr>
<tr>
<td>(E_2)</td>
<td>0.6</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>10</td>
</tr>
<tr>
<td>(u_{\text{min}})</td>
<td>0</td>
</tr>
<tr>
<td>(u_{\text{max}})</td>
<td>1</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. Control Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa)</td>
<td>0.1</td>
</tr>
<tr>
<td>(\omega_m)</td>
<td>10</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>1</td>
</tr>
<tr>
<td>(T)</td>
<td>10</td>
</tr>
<tr>
<td>(\mu_{1,2})</td>
<td>1</td>
</tr>
<tr>
<td>(\epsilon_{1,2})</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Simulation results of the state variable trajectories are given in Figure 1. A phase plane diagram is shown in Figure 2. From that figure, we see how the system is driven to a stable periodic orbit and how this periodic orbit is moved to the optimal one.

The trajectory of the switching-parameter in Figure 3 shows that the control procedure with the optimal parameter \(\theta \).

The cost function value over time is represented in Figure 4. The effect of the drug over time and the value of the indicator function are presented in Figure 5. From this figure, we see that the therapeutic range \([E_1, E_2]\) is reached at each cycle.
5. CONCLUSION

In this paper, we posed and solved a single input optimal control problem over periodic orbits using extremum seeking and receding horizon techniques. The method proposed used parametrization of the control as a sequence of time switching.

REFERENCES

