"Adjustments after an ankle dorsiflexion perturbation during human running"

Scohier, Mikaël ; De Jaeger, Dominique ; Schepens, Bénédicte

Abstract
In this study we investigated the effect of a mechanical perturbation of unexpected timing during human running. With the use of a powered exoskeleton, we evoked a dorsiflexion of the right ankle during its swing phase while subjects ran on a treadmill. The perturbation resulted in an increase of the right ankle dorsiflexion of at least 5°. The first two as well as the next five steps after the perturbation were analyzed to observe the possible immediate and late biomechanical adjustments. In all cases subjects continued to run after the perturbation. The immediate adjustments were the greatest and the most frequent when the delay between the right ankle perturbation and the subsequent right foot touch-down was the shortest. For example, the vertical impact peak force was strongly modified on the first step after the perturbations and this adjustment was correlated to a right ankle angle still clearly modified at touch-down. Some late adjustments were observed in the subsequent step...

Document type : Article de périodique (Journal article)

Référence bibliographique

DOI : 10.1016/j.gaitpost.2011.07.019
Adjustments after an ankle dorsiflexion perturbation during human running

M. Scohier, D. De Jaeger, B. Schepens*

Laboratoire de Physiologie et de Biomécanique de la Locomotion, Institute of NeuroScience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348 Louvain-la-Neuve, Belgium

ARTICLE INFO

Article history:
Received 6 September 2010
Received in revised form 25 March 2011
Accepted 28 July 2011

Keywords:
Human running
Perturbation
Exoskeleton
Ground reaction forces

ABSTRACT

In this study we investigated the effect of a mechanical perturbation of unexpected timing during human running. With the use of a powered exoskeleton, we evoked a dorsiflexion of the right ankle during its swing phase while subjects ran on a treadmill. The perturbation resulted in an increase of the right ankle dorsiflexion of at least 5°. The first two as well as the next five steps after the perturbation were analyzed to observe the possible immediate and late biomechanical adjustments. In all cases subjects continued to run after the perturbation. The immediate adjustments were the greatest and the most frequent when the delay between the right ankle perturbation and the subsequent right foot-touchdown was the shortest. For example, the vertical impact peak force was strongly modified on the first step after the perturbations and this adjustment was correlated to a right ankle angle still clearly modified at touchdown. Some late adjustments were observed in the subsequent steps predominantly occurring during left steps. Subjects maintained the step length and the step period as constant as possible by adjusting other step parameters in order to avoid stumbling and continue running at the speed imposed by the treadmill. To our knowledge, our experiments are the first to investigate perturbations of unexpected timing during human running. The results show that humans have a time-dependent, adapted strategy to maintain their running pattern.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Running is one of the most popular recreational activities. This could explain why the biomechanics of normal running are so well documented [1,2]. Although in the real world humans must negotiate various perturbations during running, little is known about the way they do it.

In walking, the effects of unexpected perturbations such as slipping [3], tripping [4], obstacle avoidance [5,6], loss of ground support [7] or unexpected compliant surface [8] have been investigated. For any given perturbation, rapid and appropriate adjustments have been observed allowing the subjects to avoid falling and continue walking. Perturbations such as a mechanically evoked ankle dorsiflexion have also received a lot of interest during walking [9,10]. The amplitude of the plantar-flexor muscles reflex responses was investigated but little attention was paid to the walking pattern adjustments realized by the subject after that perturbation.

In running, Grimmer and colleagues [11,12] measured the biomechanical adjustments made by subjects running over an uneven track which incorporated a clearly visible force plate of adjustable height. The runners maintained their running pattern by adjusting their leg contact angle and ankle joint stiffness to the height of the vertical step.

In animals, the strategies used to negotiate an unexpected perturbation during running have been discussed over the last 10 years [13–16]. Jindrich and Full [13] showed that a running cockroach pushed to one side, recovered within two strides and continued running on its original path. Daley and colleagues [14–16] investigated the reactions of guinea fowl to an unexpected drop in terrain height during running. The drop of 8.5 cm (approximately 40% of the leg length) was dissipated by a thin paper. In all experimental trials, the guinea fowls recovered and continued running at about the same preferred speed as before; in only one trial, an animal stumbled, but without falling.

Daley [17] and Alexander [18] consider that dynamic stability is the ability of a system to continue a pattern of motion in the face of small disturbances. This ability has been observed after an unexpected perturbation in human walking [3–8] and animal locomotion [13–16]. To our knowledge, no study has investigated unexpected perturbation during human running.

In this study, we investigated the adjustments made to the running pattern after an ankle perturbation of unexpected timing, by measuring the angular position of the ankle and the ground reaction forces. We used an innovative powered ankle-foot exoskeleton to mechanically evoke ankle dorsiflexion at random timing inside the swing phase. We observed whether the adjustments were modulated as a function of the perturbation...
timing. The two steps following the perturbation were analyzed for the immediate adjustments made by the subject, and the subsequent five steps were analyzed for the late adjustments.

2. Methods

2.1. Subjects

Seven healthy young men (age = 26.2 ± 2.2 years, body mass = 75.6 ± 9.1 kg, height = 1.81 ± 0.03 m) participated in this study. All subjects were free of lower leg injuries at the time of the experiment. Subjects were informed of the experimental conditions and provided their written consent to participate. Experiments were performed according to the Declaration of Helsinki and approved by the local ethics committee.

2.2. Materials

All subjects ran on an instrumented treadmill at a speed of 2.8 m s⁻¹ while wearing regular running shoes and equipped with a powered exoskeleton on their right leg (Fig. 1A and B). This new device, inspired by that of Andersen and Sinkjær [19], was designed to deliver a well-defined perturbation to the right ankle joint while the subject is running on the treadmill. It consists of two carbon fiber shells, custom-made for each subject, placed around the foot and the lower leg. The shells are linked by a joint pivoting at the center of rotation of the ankle and allowing only dorsi-plantar movements. An optical encoder in the pivot (1 kHz sampling rate, Avago Technologies®). HEDS-9200) measured the angular position of the ankle (°). A clutch and actuator (SEW®), connected to a servomotor (Parker Compumotor® AT6250) by Bowden cables, could flex the ankle at speeds up to 600° s⁻¹ with a

![Image](image_url)

Fig. 1. (A) Powered exoskeleton designed to deliver a perturbation to the right ankle joint during running. Two carbon fiber shells around the foot and the lower leg are linked by a hinged joint pivoting at the center of rotation of the ankle. (B) Subject with exoskeleton running on the treadmill. (C) Typical trace of the vertical ground reaction force (F, N) of one subject; only the first four steps of the sequence, including the control steps (Lctrl and Rctrl) and the perturbed steps (Lpert and Rpert), are shown. TD = touch-down of a foot. TO = toe-off of a foot. L or R for left or right, ctrl or pert subscripts for control or perturbed steps. The vertical interrupted line indicates the first TD following the perturbation (right TD). The vertical dotted lines indicate TD or TO. The white boxes represent the swing phases while the grey boxes represent the contact phases. Perturbations were applied to the right ankle during its swing phase, more precisely during the contact phase of the left foot or the flight phase preceding the right TD, i.e. during Lpert, as defined at the bottom of Fig. 1C. The perturbations were classified into five timing groups as shown: t1, t2, t3, t4 and t5, see Section 2 for details. The parameters t1, t2, Fmax, Fmax and t4 are described in the text.
maximal torque of 300 Nm. The clutch and actuator could be activated at any predetermined moment during running. The whole device weights less than 1 kg. As part of the device was worn inside the right shoe, an insole was placed in the left shoe to compensate for the thickness of the right foot shell.

A strain-gauge sensor under each corner of the treadmill (1 kHz sampling) measured the three orthogonal components of the ground reaction force (GRF) [20]: vertical F_v, fore-aft F_f and lateral F_l, in N.

2.3. Experimental protocol

Each session started with the habituation of the subject to the treadmill. Two 1-min runs were first recorded, then the subject was equipped with the exoskeleton and after habituation we again recorded two 1-min runs without perturbation. Thereafter perturbations consisting of dorsiflexion of the right ankle were evoked at any time during running.

The perturbations analyzed in this paper were provoked during the swing phase preceding the right foot touch-down (right TD, Fig. 1C). The timing of the perturbation was predetermined using a delay relative to the left foot touch-down (left TD), determined from the F_l. The same perturbation timing was used for 3–7 successive perturbations, and then randomly modified. There were randomly 15–30 steps between two successive perturbations, to avoid subject anticipation and cumulative effects of the perturbations. The number of perturbations analyzed by subject was variable (from 27 to 122).

2.4. Data processing

The angular position of the right ankle and the GRFs were recorded on a personal computer and analyzed with Labview® v8.6.

A 10-steps sequence beginning with a left TD was used to analyze the effect of the perturbation (Fig. 1C). We defined a step as the period between one TD and the next one. The right ankle was always perturbed during a swing phase, specifically during a left step (L_{pert}). The seven steps following L_{pert} ($R_{pert}, L_1, R_1, \ldots$) were used to analyze the perturbation effects. The two preceding steps were used as control (L_{ctrl}, R_{ctrl}). L_{ctrl} was the reference for L_{pert}, R_{pert}, R_1, R_2, and R_3.

The exact onset of the perturbation was visually determined as the time at which the ankle position and velocity curves of the perturbed step were differentiated from those of the corresponding control step. Each perturbation was assigned to a timing group corresponding to one fifth of the step duration: 0–20% (t_1), 20–40% (t_2), 40–60% (t_3), 60–80% (t_4) or 80–100% (t_5) (Fig. 1C). In total 441 perturbations were analyzed with the following repartition: $n = 74, 57, 80, 101$ and 129 for respectively t_1, t_2, t_3, t_4 and t_5. The perturbation was in addition characterized by its rise time (ms), amplitude (°), average speed (°s$^{-1}$) and hold time (ms) (see Fig. 2A).

The ground reaction force signals (F_v and F_f) were Butterworth first-order low-pass filtered at a cutoff of 40 Hz; the data were passed through the filter in both directions to avoid any phase lag. F_v was not studied.

Contact and flight phases were visually determined from F_v traces to obtain the contact (t_{sec}, ms), flight (t_{sec}, ms) and total (T, ms) durations of each step (see Fig. 1C). The maximal amplitude of the negative fore-aft ($F_{f, \text{break}, N}$), of the positive fore-aft ($F_{f, \text{post}, N}$) and of the vertical ($F_{v, \text{max}, N}$) GRFs was measured. The step length ($L_{step, mm}$) was calculated as T multiplied by the averaged treadmill speed during T. During heel-toe running, which is the most used running technique by our subjects, a distinct vertical impact peak can be detected in the first 50 ms of a step. The amplitude ($F_{v, \text{peak}, N}$) and the time ($t_{v, \text{peak},ms}$) of this impact peak were measured when present. The mean loading rate ($G_{L, N / ms^{-1}}$) was calculated as the ratio of $F_{v, \text{peak}}/t_{v, \text{peak}}$.

2.5. Statistics

For each parameter, the value measured at any step after the perturbation was compared to its value in the corresponding control step. The difference was calculated and compared to zero with a one-sample Student’s t-test ($\alpha = 0.05$).

which the ankle joint was locked in its position (plateau). The absolute amplitude of the perturbation (3) corresponds to the ankle angular displacement measured during the rise time. The relative amplitude (4) was obtained by subtracting the ankle angular displacement of the control step L_{ctrl} from the absolute amplitude of the perturbation. The absolute speed was calculated as $\Delta(3)/(1)$. Panel B shows for each timing group t_1–t_5 the relative right ankle dorsiflexion at specific times after the perturbation: at the end of the rise time (grey bar) and at the following toe-offs and touch-downs ($L_{pert}, TO, R_{pert}, TD, L_{pert}, TO$ and L_1, TD; black bars) as indicated. The values are expressed as the difference between the right ankle position at these specific times and its position at the corresponding time of the control step. Bars represent mean ± S.D. For t_1 to t_5 the arrow shows the mean value of the perturbation onset. Note the time scale is the same in Panels A and B. *Significant difference from 0 ($p < 0.05$).
3. Results

We did not observe any fall, and all the subjects continued to run normally, in spite of the ankle perturbations.

3.1. Effect of the perturbation on the right ankle angle

The perturbations were quite similar between timing groups (t1–t5, Fig. 2A); the average right ankle dorsiflexion was characterized by a rise time of 43 ± 9 ms, an absolute amplitude of 9.0 ± 3.5°, an absolute speed of 206 ± 66° s⁻¹ and an hold time ≈100–150 ms. An example is illustrated for a t2 perturbation in Fig. 2A. The mean delay between the perturbation and the Rₚ pert TD is 327 ± 28, 252 ± 26, 181 ± 24, 113 ± 22 and 45 ± 16 ms for respectively t1, t2, t3, t4 and t5. The relative amplitude of the perturbation decreased slightly from t1 to t5 but was not significantly different between timing groups (from 7.9° to 5.3°, Fig. 2B; grey bars).

The right ankle angle was measured at different moments after the perturbation (Lₚ pert TO, Rₚ pert TD, Rₚ pert TO and Lₐ pert TO) and was compared to the values obtained during the control stride (Fig. 2). For t1 and t2, we observed a dorsiflexion increase only at Lₚ pert TO (2.4° and 5.2°, respectively). For t3, the increase was 6.3° at Lₚ pert TO and still 2.4° at Rₚ pert TO. For t4, the right ankle dorsiflexion increased by 2.2° at Lₚ pert TO and by 5.6° at Rₚ pert TD. For t5, in which the perturbations were evoked after Lₚ pert TO, the dorsiflexion ankle angle was increased by 4.8° at Rₚ pert TD. For t4 and t5, the right ankle dorsiflexion was still slightly increased at Rₚ pert TO and Lₐ pert TO compared to control steps. So, perturbations of late timing (t4 and t5) had a longer lasting effect on the right ankle angle than perturbations of early timing (t1 and t2).

3.2. Immediate effect of the perturbation on the running pattern (Rₚ pert and Lₐ pert, Table 1)

There seemed to be a time-dependent effect of the perturbation on the following first two steps (Rₚ pert and Lₐ pert): the shorter the delay between the perturbation and the right TD (groups t4 and t5), the greater the number and the size of significant modifications.

In group t1, none of the measured parameters was significantly modified during Rₚ pert. During Lₐ pert, few small significant modifications were observed.

In group t2, tₕ, T and L significantly increased and Fᵧ-push decreased during Rₚ pert. During Lₐ pert, L and Fᵧ-push decreased and Fᵧ Briggs increased.

In group t3, T and L significantly increased and Fᵧ-max decreased during Rₚ pert, as observed for t2. During Lₐ pert, tₕ, T and Fᵧ Briggs increased.

In group t4, beside a small increase of tₕ, we observed larger modifications (more than 10%, see bold in Table 1) in the vertical impact peak during Rₚ pert; on an average the peak occurred 5 ms after the perturbation.
later with a decreased amplitude of 97 N resulting in a reduction of its loading rate by 7 N ms\(^{-1}\) (Fig. 3). During \(L_1\), there were many significant modifications but none were greater than 10\%: \(t_{z,i}\), \(t_c\), and \(T\) increased and \(t_d\) decreased. The forces applied by the subject against the ground were also modified; in the fore-aft direction, \(F_{y,\text{brake}}\) increased and \(F_{y,\text{push}}\) decreased; in the vertical direction, \(F_{z,i}\) increased and \(G_{z,i}\) slightly decreased.

In group \(t_5\), the same strong modification (more than 10\%) of the vertical impact peak was observed during \(R_{\text{pert}}\) step: \(t_{z,i}\) increased, \(F_{z,i}\) and \(G_{z,i}\) decreased (Fig. 3). There were many other smaller modifications: \(T\) decreased with a decrease \(t_c\) and an increase \(t_e\). \(F_{y,\text{brake}}\) decreased, \(F_{y,\text{push}}\) increased. During \(L_1\), there were also many small but significant modifications: \(t_{z,i}\), \(t_c\), \(T\) and \(L\) increased and \(t_d\) decreased. As in the \(t_4\) group, \(F_{y,\text{brake}}\) increased and \(F_{y,\text{push}}\) decreased. In addition, \(G_{z,i}\) and \(F_{z,\text{max}}\) decreased.

3.3 Late effect of the perturbation on the running pattern (\(R_{t_1}\) to \(R_{t_3}\), Table 1)

The modifications observed later (after the first two steps) were small and disperse. They occurred more often on the left steps than on the right steps. The most affected parameter was \(t_c\), which was always increased during the left steps \(L_2\) and \(L_3\) in groups \(t_3\), \(t_4\) and \(t_5\). On the other hand, \(T\) and \(L\) were two stable parameters. Indeed, \(T\) was modified only during \(R_{t_3}\) for \(t_3\), and \(L\) during \(R_{t_3}\) for \(t_3\) and during \(L_{t_2}\) for \(t_4\). The significant modifications of the vertical impact peak were small and infrequent.

4. Discussion

An important result coming from our experiments is that in all cases subjects continued to run normally after the perturbation. They were able to rapidly adjust their running pattern to maintain their stable progression on the treadmill. This ability has already been observed in animal running after an unexpected perturbation [13–16] and was called dynamic stability [17,18].

Our perturbation was evoked on the right ankle during its swing phase. We observed immediate and late adjustments, respectively occurring during the first two steps following the perturbation (\(R_{\text{pert}}\) and \(L_{t_1}\)), and during the next five steps (\(R_{t_1}\) to \(R_{t_3}\)).

4.1 Immediate adjustments

In order to maintain their running pattern, the subjects realized many small but significant adjustments to their first two post-perturbation steps. (1) The step length and the step period were quite stable. When both were modified, they varied in the same direction, which is functionally important to continue running at the speed imposed by the treadmill and consequently to avoid falling. An increase in the step period was associated with a delayed vertical impact peak, and a longer contact time not compensated by a reduced flight time. (2) The strongest modifications of the vertical component of the GRFs concerned the impact of the foot, specifically for the perturbations of late timing (\(t_4\) and \(t_5\)). (3) Finally, modifications of the fore-aft component of the GRFs were observed principally when the perturbations were evoked just before the foot contact (\(t_4\) and \(t_5\)). During \(R_{\text{pert}}\), the subjects exerted a smaller maximal braking force and pushed off with a greater maximal force. By contrast, during the next step (\(L_{t_1}\)) subjects exerted a greater maximal braking force and pushed off with a smaller maximal force. Thus subjects seemed to adjust the fore-aft component of the GRF to deal with the perturbation. This component, although considered essential to the understanding of the biomechanics of normal running [21,22], has been much less studied than the vertical component in experiments on perturbed locomotion, and would seem to deserve more attention in the future.

The adjustments observed in the first two steps following the perturbation seem to be time-dependent. The longer the delay between the perturbation and the next TD, the less frequently the adjustments were observed in the first two steps. This is shown most clearly in the first step \(R_{\text{pert}}\): no biomechanical modification was observed in \(R_{\text{pert}}\) when the delay was on average 327 ms (11). The modifications were limited when the delay was on average 252 and 181 ms (respectively \(t_2\) and \(t_3\)). When the delay was shorter (on average 113 and 45 ms for respectively \(t_4\) and \(t_5\)), many significant biomechanical modifications were observed. In human walking, Weerdesteyn et al. [6], reported that the first reactions to avoid an obstacle occurred at short latencies; the differentiated acceleration curve of the foot deviated from the control by 122 ms on average after the appearance of an obstacle. In our study, in groups \(t_1\), \(t_2\) and partially \(t_3\), the delay seemed to be long enough for the system to realize the needed adjustments before the next touch-down.

When the perturbation was evoked just before the right step touch-down (\(t_4\) and \(t_5\)), we observed an increased ankle dorsiflexion at \(R_{\text{pert}}\), TD associated with a strongly delayed and reduced vertical impact peak force, along with a decreased loading rate. To further investigate the relationship between ankle position at TD and vertical impact, we tested the correlations between the two. As expected, a greater dorsiflexion at TD was correlated with a delayed vertical impact peak (Fig. 4A) whose amplitude (Fig. 4B) and loading rate (Fig. 4C) were reduced. All three curve fit slopes were significantly different from 0 (\(p < 0.05\)) with low \(r^2\) (respectively 0.22, 0.10 and 0.23). Together, these results indicated that the ankle position at TD was one of the factors likely to explain the observed modifications to the vertical impact.
The effect of ankle position at TD on the vertical impact peak has been observed previously. Using a modeling approach to normal human running, Gerritsen and colleagues [23] showed that at TD an increased angle between the shoe sole and the ground (corresponding to an increased ankle dorsiflexion if the lower leg position is not modified) decreased the amplitude as well as the loading rate of the vertical impact peak. In an experimental study comparing bare-foot and shod running, De Wit et al. [24], observed in the shod condition a greater ankle dorsiflexion at TD associated with a delayed vertical impact peak and a decrease of the loading rate. Other factors at TD, not measured in our study, such as the leg angle [23], the knee angle [24,25], the vertical speed of the heel [23] or of the shank segment [26], could also influence the vertical impact. In fact, the overall geometry at TD could induce a succession of passive regulations [11,27] like those observed on the vertical impact. In such a passive regulation system, it may be sufficient, as suggested by Daley [17], to check the foot placement or the leg stiffness only at critical moments (TD or TO, for example) in order to prepare for the next step. In our study, however, the modified ankle position resulted from a perturbation and therefore we cannot exclude the possibility that some of the observed adjustments were induced by an active regulation of the leg muscles activity. It would be interesting to study the electromyographic responses to see whether a modification of the leg muscles activation could also partially explain the modifications of the impact of the foot against the ground. In walking Shinya et al. [7] have observed an ankle muscular reflex co-contraction after an unexpected perturbation (drop) and suggested that this response could contribute to the absorption of the impact on the ground by stiffening the ankle joint.

4.2. Late adjustments

There were still a few small but significant modifications during the steps following L-1 (R-1 to R-3). These late adjustments probably contributed to maintain the step length and the step period as constant as possible. The stability of these two parameters allowed the subject to continue running at the speed imposed by the treadmill without stumbling or falling. Another interesting observation was that the late adjustments predominately occurred on the left steps, which could have been perceived by the subjects as being more ‘secure’ since the perturbation could only occur on the right ankle, the only one equipped with the exoskeleton.

In conclusion, this innovative study using a powered ankle-foot exoskeleton shows that humans are able to maintain their running pattern after a mechanically evoked ankle dorsiflexion. This perturbation, whatever its timing during the swing phase, modified the right ankle position and induced some time-dependent modifications of the running pattern. It is still not clear whether these modifications resulted from a passively modified ankle and leg geometry at touch-down, or were at least partly the result of an active regulation. To sort this out, the leg muscles’ electromyographic responses to such perturbations could be investigated together with the biomechanical running pattern adjustments.

Acknowledgments

This study was supported by grants from “Fonds Spécial de Recherche, Université catholique de Louvain” and from the “Bourse du Patrimoine de la Faculté de Médecine, Université catholique de Louvain”. We would like to thank Bruno Fievet for his technical assistance. We also thank Norman Heglund for his helpful comments and writing assistance.

Conflict of interest statement

None of the authors have financial or other conflicts of interest in regard to this research.

References

Running on uneven ground: leg adjustment to vertical steps and self-stability.

Running on uneven ground: leg adjustments by muscle pre-activation control.

Dynamic stabilization of rapid hexapod locomotion.

Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control.

Running over rough terrain reveals limb control for intrinsic stability.

Biomechanics: running over uneven terrain is a no-brainer.
