"The transcription factor HNF1α regulates expression of chloride-proton exchanger ClC-5 in the renal proximal tubule"

Tanaka, Karo ; Terryn, Sara ; Geffers, Lars ; Garbay, Serge ; Pontoglio, Marco ; Devuyst, Olivier

ABSTRACT

The Cl(-)/H(+) exchanger ClC-5 is essential for the endocytic activity of the proximal tubule cells and the tubular clearance of proteins filtered in the glomeruli. The mechanisms that regulate the expression of ClC-5 in general and its specific expression in the proximal tubule are unknown. In this study, we investigated the hypothesis that the hepatocyte nuclear transcription factor HNF1α, which is predominantly expressed in proximal tubule segments, may directly regulate the expression of CIC-5. In situ hybridization demonstrated that the expression of Clcn5 overlaps with that of Hnf1α in the developing kidney as well as in absorptive epithelia, including the digestive tract and yolk sac. Multiple binding sites for HNF1 were mapped in the 5'-regulatory sequences of the mouse and human Clcn5/CLCN5 genes. The transactivation of the Clcn5/CLCN5 promoter by HNF1α was verified in vitro, and the binding of HNF1α to the Clcn5 promoter in vivo was confirmed by chromatin immunoprecipit...

CITE THIS VERSION

Tanaka, Karo ; Terryn, Sara ; Geffers, Lars ; Garbay, Serge ; Pontoglio, Marco ; et. al. The transcription factor HNF1α regulates expression of chloride-proton exchanger ClC-5 in the renal proximal tubule. In: American Journal of Physiology: Renal Physiology, Vol. 299, no.6, p. F1339-F1347 (2010) http://hdl.handle.net/2078.1/123148 -- DOI : 10.1152/ajprenal.00077.2010

Le dépôt institutionnel DIAL est destiné au dépôt et à la diffusion de documents scientifiques émanant des membres de l'UCLouvain. Toute utilisation de ce document à des fin lucratives ou commerciales est strictement interdite. L'utilisateur s'engage à respecter les droits d'auteur lié à ce document, principalement le droit à l'intégrité de l'oeuvre et le droit à la paternité. La politique complète de copyright est disponible sur la page Copyright policy.

DIAL is an institutional repository for the deposit and dissemination of scientific documents from UCLouvain members. Usage of this document for profit or commercial purposes is strictly prohibited. User agrees to respect copyright about this document, mainly text integrity and source mention. Full content of copyright policy is available at Copyright policy.
The transcription factor HNF1α regulates expression of chloride-proton exchanger ClC-5 in the renal proximal tubule

Karo Tanaka, Sara Terryn, Lars Geffers, Serge Garbay, Marco Pontoglio and Olivier Devuyst

You might find this additional info useful...

This article cites 44 articles, 16 of which can be accessed free at:
http://ajprenal.physiology.org/content/299/6/F1339.full.html#ref-list-1

Updated information and services including high resolution figures, can be found at:
http://ajprenal.physiology.org/content/299/6/F1339.full.html

Additional material and information about AJP - Renal Physiology can be found at:
http://www.the-aps.org/publications/ajprenal

This information is current as of February 15, 2012.
The transcription factor HNF1α regulates expression of chloride-proton exchanger ClC-5 in the renal proximal tubule

Karo Tanaka,¹* Sara Terryn,²* Lars Geffers,³ Serge Garbay,⁴ Marco Pontoglio,⁴ and Olivier Devuyst²

¹Department of Pharmacology, Teikyo University School of Medicine, Tokyo, Japan; ²Nephrology Unit, Université Catholique de Louvain Medical School, Brussels, Belgium; ³Department of Genes and Behavior, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and ⁴INSERM U567, CNRS UMR 8104, Université Paris-Descartes, Team 26, Institut Cochin, Paris, France

Submitted 8 February 2010; accepted in final form 30 August 2010

Tanaka K, Terryn S, Geffers L, Garbay S, Pontoglio M, Devuyst O. The transcription factor HNF1α regulates expression of chloride-proton exchanger ClC-5 in the renal proximal tubule. Am J Physiol Renal Physiol 299: F1339–F1347, 2010. First published September 1, 2010; doi:10.1152/ajprenal.00077.2010.—The Cl⁻/H⁺ exchanger ClC-5 is essential for the endocytosis of the proximal tubule cells and the tubular clearance of proteins filtered in the glomeruli. The mechanisms that regulate the expression of ClC-5 in general and its specific expression in the proximal tubule are unknown. In this study, we investigated the hypothesis that the hepatocyte nuclear transcription factor HNF1α, which is predominantly expressed in proximal tubule segments, may directly regulate the expression of ClC-5. In situ hybridization demonstrated that the expression of Clcn5 overlaps with that of Hnf1α in the developing kidney as well as in absorptive epithelia, including the digestive tract and yolk sac. Multiple binding sites for HNF1 were mapped in the 5'-regulatory sequences of the mouse and human Clcn5/CLCN5 genes. The trans-activation of the Clcn5/CLCN5 promoter by HNF1α was verified in vitro, and the binding of HNF1α to the Clcn5 promoter in vivo was confirmed by chromatin immunoprecipitation in mouse kidney. The expression of Clcn5 was reduced in the proximal tubule segments of Hnf1α-null kidneys, and it was rescued upon transfection of HNF1α-null cells with wild-type but not with mutant HNF1α. These data demonstrate that HNF1α directly regulates the expression of ClC-5 in the renal proximal tubule and yield insights into the mechanisms governing epithelial differentiation and specialized transport activities in the kidney.

endocytosis; Dent’s disease; absorptive epithelia

CHLORIDE TRANSPORTERS EXPRESSED in renal epithelial cells are involved in a range of physiological processes, including regulation of cell volume or intracellular pH, acidification of intracellular vesicles, and transepithelial transport (8). These functions rely on the specific distribution and regulation of the various transporters in distinct tubular segments. The cells lining the proximal tubule (PT) are characterized by an intense endocytic activity, responsible for the tubular clearance of most proteins filtered in the glomeruli (5). Chloride ions have long been considered important for endocytosis, because the influx of negative charges partially neutralizes the transmembrane potential generated by the vacuolar proton ATPase (V-ATPase), thus facilitating vesicular acidification and progression along the endocytic apparatus (23). The characterization of two independent knockout (KO) mice has shown that the endosomal Cl⁻/H⁺ exchanger ClC-5 is essential for the endocytosis mediated by PT cells (28, 43).

ClC-5 is a member of the CLC family of Cl⁻ channels and Cl⁻/H⁺ exchangers that is primarily expressed in renal PT endosomes (7, 12). Heterologous expression studies have shown that ClC-5 operates as an electrogenic Cl⁻/H⁺ exchanger (35) that facilitates the acidification of PT endosomes (13). Defective endocytosis underlines the low-molecular-weight proteinuria and PT dysfunction in patients with Dent’s disease (20, 36) and in ClC-5 KO mice (28, 43). In addition to its predominant expression in PT cells, ClC-5 is also expressed in the cells lining the thick ascending limb (TAL) and collecting duct (CD) nephron segments (7, 12) and in the epithelial cells lining the small intestine and colon of rats, which have morphological and functional similarity (e.g., high absorptive and endocytic activity) with PT cells (42). The mechanisms involved in the regulation of ClC-5 expression and its specific distribution in absorptive epithelia and PT segments in particular remain unknown.

The homeodomain-containing hepatocyte nuclear factor 1α (HNF1α) is expressed in specialized epithelial cells of the liver, kidney, intestine, and pancreas, which are actively involved in absorption and secretion processes (41). In particular, HNF1α regulates the transcription of major plasma proteins as well as products synergistically involved in carbohydrate metabolism, bile acid and cholesterol metabolism (29, 37, 40). Heterozygous mutations in HNF1α are a common cause of an autosomal dominant form of diabetes mellitus characterized by early age of onset and pancreatic β-cell dysfunction (maturity-onset diabetes of the young type 3; MODY3) (9). In the mouse kidney, HNF1α is predominantly expressed in PT segments, and its inactivation, which does not affect nephrogenesis, is reflected by a defective reabsorption of glucose and phosphate due to a reduced expression of the Na⁺/glucose cotransporter SGLT2 (SLC5A2) and the Na⁺/phosphate cotransporter NPT1 (SLC17A1), respectively (4, 29, 31). A closely related transcription factor named HNF1β, which is expressed earlier during development and detected in all nephron segments except the glomerulus, has also been characterized (18, 29). Based on the expression of HNF1α in PT segments and the fact that its inactivation is reflected by downregulation of plasma membrane transporters active in PT cells, we hypothesized that HNF1α may be involved in the segment-specific regulation of ClC-5. To investigate this possibility, we determined the tissue-specific expression patterns of Clcn5 and Hnf1α during mouse development and nephrogenesis. We examined the 5’-regulatory sequences of mouse Clcn5 and human CLCN5 for HNF1 binding sites and used chromatin immunoprecipita-

* K. Tanaka and S. Terryn contributed equally to this study.

Address for reprint requests and other correspondence: O. Devuyst, Div. of Nephrology, UCL Medical School, 10 Ave. Hippocrate, B-1200 Brussels, Belgium (e-mail: olivier.devuyst@uclouvain.be).

http://www.ajprenal.org

0363-6127/10 Copyright © 2010 the American Physiological Society

F1339
tion (ChIP) to confirm the in vivo binding of HNF1α to the Clcn5 promoter. The transactivation of the Clcn5/CLCN5 promoter by HNF1α was verified in vitro and in PT segments and cells from Hnf1α-null mice. Taken together, our data demonstrate that HNF1α directly regulates the expression of the endosomal Cl−/H+ exchanger CIC-5 in the PT of the kidney.

MATERIALS AND METHODS

In situ hybridization in mouse embryos. Whole mount in situ hybridization was carried out using standard procedures (33). Briefly, mouse embryos were dissected between days 9.5 (E9.5) and E12.5 of gestation, fixed in 4% paraformaldehyde, treated with proteinase K, refixed, and hybridized overnight at 68°C with a digoxigenin-labeled antisense riboprobe transcribed in vitro from a 1.6-kb cDNA fragment of the 3′-end of the Clcn5 open reading frame. High-stringency washing at 68°C was used, followed by incubation with anti-digoxigenin-AP antibody (Roche Applied Science, Mannheim, Germany) and revelation with nitroblue tetrazolium chloride and 5-bromo-4-chloro-3-indolylphosphate. Control hybridization was performed with a sense probe derived from the same cDNA template.

In situ hybridization studies for localization of Hnf1α, Clcn5, and MyoD in mouse E14.5 embryos were performed as described earlier (26). Gene expression was detected using digoxigenin-labeled anti-sense riboprobes generated by in vitro transcription from DNA templates that were PCR-amplified from mouse E14.5 cDNA. Images and associated metadata were deposited in a public database (http://www.genePaint.org).

In silico identification of putative HNF1 binding sites. DNA sequence information is based on the mouse and human genome assemblies NCBI37/mm9 and NCBI36/hg18, respectively. The search for putative HNF1 binding sites at the gene loci of CIC-5 and other members of the CLC gene family was performed as previously described (40), and results were displayed using the University of California Santa Cruz Genome Browser. A matrix comparison of the 5′ sequence of CLCN5/Clcn5 genes was used to generate a dot plot that identifies regions of similarity between the two sequences (21).

Nuclear extracts and bandshift assay. Nuclear extracts from freshly dissected rat liver were prepared as described (10), with all buffers containing protease inhibitors aprotinin (1 μg/ml), benzamidine (2 mM), and PMSF (0.5 mM). Sense and antisense oligonucleotides for putative HNF1 binding sites, mBS-1 (+1931) and hBS-3 (−1056), were synthesized, and the forward strands were end-labeled with γ-[32P]ATP by T4 polynucleotide kinase. Double-stranded probes (1 ng) were incubated with 5 μg of the nuclear extracts for 10 min in a final volume of 14 μl. Samples were then subjected to electrophoresis on a 6% polyacrylamide gel and autoradiography. For competition assays, a 50-fold molar excess of unlabeled oligonucleotides was added to the reaction mixtures.

Chromatin immunoprecipitation assay. Chromatin immunoprecipitation (ChIP) was performed as described previously (11). Nuclei were prepared from pooled kidneys of C57BL/6 mice, and primers were designed using PrimerExpress 2.0 software (Supplemental Table 1; supplementary material for this article is available online on the Journal web site). Quantification of immunoprecipitated DNA fragments was carried out in triplicate on an ABI PRISM 7000 system using SYBR green fluorescent dye (Applied Biosystems, Foster City, CA). The relative DNA enrichment was based on the formula (ChIPtarget/ChIPnormalized) × (inputtarget/inputnormalized). A DNA fragment in the first intron of aortic smooth muscle α-actin 2 gene (Acta2), which lacks any HNF1 binding site, was used as a negative control. Specificity of the HNF1α antibody was previously established (6, 11).

Isolation and subcloning of CLCN5-regulatory sequences. The luciferase vectors containing mouse Clcn5 5′-regulatory sequences were previously constructed (38). The human X chromosome-specific cosmids library ICRF104 (L4/FSC X) was screened using a cDNA fragment of the 5′-end of CLCN5, and the 5-kb BamHI/Xhol genomic fragment containing ~2.5 kb upstream of the transcription start site to exon 2 was subcloned into the pXP2 promoterless luciferase vector.

Cell culture, transient transfection, and luciferase reporter assay. Monkey kidney COS-7 cells and human epithelial cervical carcinoma C33 cells were cultured in DMEM containing 10% FCS, and the reporter gene assay was performed as previously described (38). Briefly, the constructs were transiently transfected by the calcium phosphate method at a vector DNA dose of 500 ng per 1 × 10⁶ cells, and their luciferase activities were measured compared with that of empty vector pXP2. An expression vector pRSV-β-galactosidase was used for the normalization of transfection efficiency. For the coexpression analysis, an expression vector pRSV-HNF1α was included in the transfection at a dose of 500 ng per 1 × 10⁵ cells. The total DNA content per transfection was equalized with pGEM plasmid DNA.

Animals. The Hnf1α mice used in this study have been generated and characterized previously (29) and were examined at young age (2–4 wk). All procedures were performed in accordance with National Institutes of Health guidelines for the care and use of laboratory animals and with the approval of the Committee for Animal Rights of the UCL Medical School (Brussels, Belgium).

Northern blot and immunoblot analyses. Total RNA was isolated from freshly dissected kidneys of 15- to 18-day-old Hnf1α mice by using the guanidinium thiocyanate-acid phenol method, separated in a denaturing agarose gel, and transferred on a nylon membrane. The blot was hybridized with a radiolabeled cDNA fragment corresponding to the 1.6-kb sequences of the 3′-end of the Clcn5 open reading frame (exons 8–12) and then with a β-actin cDNA control probe (Clontech, Mountain View, CA) for normalization. The specificity of the cDNA probe to the Clcn5 transcript was verified by the absence of its hybridization to the most closely related Clcn4 transcript. Immunoblotting for CIC-5 was performed as described (43). Briefly, mouse PT cells (mPTC) lysates were separated on nitrocellulose and incubated overnight at 4°C with affinity-purified SB499 antibodies against CIC-5 (43), washed, incubated with peroxidase-labeled antibodies (Dako, Glostrup, Denmark), and visualized with enhanced chemiluminescence. The blots were stripped and reprobed with the anti-β-actin antibody (Sigma, St. Louis, MO) for normalization.

Microdissection of individual nephron segments. Individual nephron segments were microdissected from Hnf1α kidneys as described by Terryn et al. (39). Thin coronal slices were prepared from freshly dissected decapsulated kidneys to separate the cortex and medulla at 4°C in HBSS containing glycine, alanine, and glucose buffered to pH 7.4 and 325 mosmol/kgH2O. The cortical and medullary tissue was then digested with collagenase type II (1 mg/ml) for 30 min (for PT) and up to 1 h (other tubules) at 37°C. After digestion, the tubule suspension was washed with albumin (10 mg/ml) and placed on a stage of an inverted microscope. A total of 50 PT (S1 and S2), TAL, and CD segments were collected and placed in 300 μl RLT-buffer (Qiagen, Hilden, Germany) containing 2-mercaptoethanol. Total RNA was extracted immediately after microdissection using an RNeasy Micro Kit (Qiagen) according to the manufacturer’s instructions. Quantity and concentration of the isolated RNA preparations were analyzed using the 2100 BioAnalyzer (RNA Pico chip from Agilent Technologies, Palo Alto, CA). Total RNA samples were stored at −80°C.

Primary culture of mouse PT cells. Primary cultures of mPTC were prepared from Hnf1α mice aged 6 wk, as described previously (39). PT fragments were seeded onto collagen-coated PTFE filter membranes (Transwell-COL, Costar, Corning) in culture medium [DMEM:F12 with 15 mM HEPES, 0.55 mM Na-pyruvate, 0.1 ml/l nonessential amino acids and the SingleQuots Kit (Lonza, Werviers, Belgium) containing hydrocortisone, hEGF, FBS, epinephrine, insulin, triiodothyronine, transferrin, gentamicin/amphotericin, pH set to 7.4 and osmolality at 325 mosmol/kgH2O] and incubated in a humidified chamber at 37°C/5% CO₂. The medium was replaced every 48 h, and a confluent monolayer of mPTC was expanded from the tubular fragments after 6–7 days.
Plasmids and site-directed mutagenesis and transfection of mPTC. In vitro mutagenesis was carried out on a Rous sarcoma virus (RSV)-driven full-length human HNF1α expression vector (5.981-kb plasmid DNA) (1) using a QuickChange Lightning Site-Directed Mutagenesis Kit (Stratagene, Agilent) following the manufacturer’s protocol. The H1 mutant, corresponding to the pathogenic T10M mutation in the dimerization domain of HNF1α (9), was generated by PCR using two oligonucleotide primers, each complementary to opposite strands of the vector: 5'-aactgagccagctgcagTggagctcctg-3' and 5'-cagagctcctAgtgagctcctgctaggtg-3'. The identity of the mutant plasmid was verified by sequencing with a BigDye terminator kit (PerkinElmer Applied Biosystems) and analysis on an ABI3100 capillary sequencer (PerkinElmer Applied Biosystems).

The mPTC were transiently transfected at ~80% confluence by incubation with the plasmid containing either the wild-type or the H1 mutant HNF1α and FuGene HD (Roche). 1 μg plasmid was added to FuGene HD in the culture medium. After 24 h of incubation, cells were harvested for real-time qPCR and immunoblotting. The efficiency of transfection for both plasmids was similar and verified by immunoblotting for the c-myc tag. Total RNA was extracted from mPTC with an RNaseasy kit (Applied Biosystems). For protein extraction, mPTC were washed with PBS, solubilized in ice-cold 10% SDS lysis buffer containing protease inhibitors (Complete Mini; Roche Diagnostics), and centrifuged at 1,000 g for 15 min at 4°C. The pellet (nuclear extract) was suspended in ice-cold lysis buffer. Supernatant and pellet were stored at ~80°C. Protein concentrations were determined with a bicinchoninic acid protein assay using BSA as standard.

Real-time PCR. Real-time PCR was performed as described previously (16). The reverse transcriptase reaction was performed using an iScript TM cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA). Changes in target gene mRNA levels were determined by relative RT-qPCR with a CFX96 Real-Time PCR Detection System (Bio-Rad) using iQ SYBR Green Supermix (Bio-Rad) to detect single PCR product accumulation. Specific primers were designed using Primer3 (34) (Supplemental Table 2). PCR conditions were 94°C for 3 min followed by 40 cycles of 30 s at 95°C, 30 s at 60°C, and 1 min at 72°C. The PCR products were purified and sequenced using an ABI3100 capillary sequencer (PerkinElmer Applied Biosystems). The efficiency of each set of primers was determined by dilution curves (Supplemental Table 2). The relative changes in target over GAPDH mRNAs was calculated using the 2^−ΔΔCt formula (27). Real-time PCR results were confirmed using two reference genes, GAPDH and HPRT1. The PCR conditions used to characterize the microdissected nephron segments were: 94°C for 3 min followed by 35 cycles of 30 s at 95°C, 30 s at 60°C, and 1 min at 72°C with FastStart Taq polymerase (Roche, Vilvoorde, Belgium). The PCR products were separated on a 2% agarose gel.

Statistical analysis. All values are expressed as means ± SE. Statistical significance was assessed using a two-tailed Student’s t-test (GraphPad Software, San Diego, CA).

RESULTS

Distribution of ClC-5 and Hnf1α transcripts during development. Whole mount in situ hybridization showed early expression of Clcn5 in the somitic lineage (Supplemental Fig. 1a). At E10.5, Clcn5 was readily detected in dermomyotome stripes covering the lateral portion of the somite and in the anlagen of the forelimbs and hindlimbs (Supplemental Fig. 1b). Somitic expression was maintained in the ventrolateral migratory myotomes along the body wall at E12.5 (Supplemental Fig. 1c). High-resolution hybridization of E14.5 mouse embryos confirmed Clcn5 expression in skeletal muscles and, in addition identified strong expression sites in the PT of the developing kidney and in intestinal epithelia, where it overlaps with the expression of Hnf1α (Fig. 1, A and B, adjacent sections). The expression of Clcn5 in muscle tissue strongly resembles that of MyoD, a classic marker for skeletal muscle differentiation (Fig. 1, B and C). Although Hnf1α is also expressed in other tissues like liver and pancreas, we observed that both Hnf1α and Clcn5 are highly expressed in absorptive epithelia during mouse development, including the yolk sac (data not shown), the primitive gut, and the PT of the kidney.

Transcriptional-regulatory sequences in mouse Clcn5 and human CLCN5 gene loci. In silico analysis of the CLC gene family revealed 11 potential, conserved HNF1 binding consensus sequences in the Clcn5 locus, three sites for Clcn3, one for Clcn7, and none for the other isoforms including the kidney-specific Clenkα and Clenkβ (Supplemental Fig. 2). The pre-
dicted HNF1 binding sites in the 5′-regulatory regions of Clcn5/CLCN5 and their matching scores to the consensus gGTTAATNaTTaNcN sequence (41) are listed in Fig. 2A. The binding site mBS-1 is mouse specific, residing within the enhancer region in the first intron of Clcn5 (38). In contrast, the hBS-3 contains a canonical consensus (−1056 nt), which appeared to be human specific. The mouse and human 5′-regulatory sequences are well conserved in the first and the second exons, and to a lesser extent in the first intron (Fig. 2B). Several nucleotide substitutions and insertion/deletion at the 3′-end of the human alternative exon 1b must have compromised the efficiency of the donor splice site. This may explain the existence of the variant form that includes exon 1b in humans (14) but not in rodents (38). Notably, the six putative HNF1 binding sites in four clusters (BS-1 to BS-4) were all located within conserved sequence segments, implying these regions are likely to contain regulatory functions. Relevance of the in silico prediction was assessed in vitro, with established bandshift patterns (30) observed for putative HNF1 binding sequences in mouse Clcn5 (at −1931 nt) and in human CLCN5 (at −1056 nt) (Supplemental Fig. 3). A β-fibrinogen sequence with a known HNF1 binding site was used as a positive control, and for the competition assay. The bandshift assay also confirmed the greater binding affinity of the human sequence at −1056 nt [**, hidden Markov model (HMM) score = 12.4] was demonstrated compared with the mouse sequence at +1931 nt (*, HMM score = 5.4).

In vivo binding of HNF1α to the mouse Clcn5 genomic locus. In vivo binding of HNF1α to the Clcn5-regulatory region was further analyzed by ChIP assay on the mouse kidney (Fig. 3). Five of seven binding sites analyzed showed a significant enrichment upon immunoprecipitation with the HNF1α-specific antibody (normalized to a known DNA fragment of Acta2 devoid of HNF1 binding element), with the maximum at the doublet sites at −4340/−4320 nt upstream of the transcription start site. A number of unbound sites located in other gene loci revealed a mean fold-enrichment of 1.07 ± 0.04, indicating a reliable technique with a baseline close to 1.0 (data not shown).

Luciferase reporter assay of mouse and human CIC-5 promoters. We previously identified promoter and enhancer elements necessary for mouse Clcn5 transcription (38). In this study, the human orthologous sequences were first isolated from a human X chromosome cosmid library, subcloned into the pXP2 promoterless luciferase vector, and their relative promoter activities were examined in the COS-6 cells (Fig. 4, A and B). The mouse Mm-pHXh4kb that contains the promoter and enhancer showed a ~1,000-fold relative luciferase activity, whereas a much lower transcriptional activity

![Fig. 2. Comparison of the mouse Clcn5 and human CLCN5 regulatory sequences. A: conservation of HNF1 binding sequences between mouse and human. Nucleotide positions and their sequences were shown with their calculated scores in fitting to the consensus sequence. HMM, hidden Markov model. B: dot plot comparison of the mouse and human 5′-end and upstream sequences (from EMBL accession nos. AL808124 and AL663118, respectively) depicted by using EMBOSS (32). The putative HNF1 binding sites (BS-1–BS-4) are shown as ovals with their nucleotide positions from the annotated transcription start site (+1) (14, 38). The sequence conservation histograms are adopted from the University of California Santa Cruz (UCSC) genome browser (http://genome.ucsc.edu/). Note that mBS-5, which is mouse specific, does not appear in the alignment shown in Fig. 3.](https://www.ajprenal.org/content/299/6/F1342/F1342.large.jpg)
(~50-fold) was observed for the human orthologous construct Hs-pBmXh5kb.

To examine the effect of HNF1α on the transcriptional activities in vitro, each construct was cotransfected either with a control vector pGEM or with a vector expressing human HNF1α in the C33 cells which lack endogenous HNF1α expression (Fig. 4, C–F). The mouse construct pMm-F3Xh2kb and the human construct pHs-BgXh2kb, which harbor HNF1 binding loci BS-1 and/or BS-2, displayed similar basal luciferase activities. While the mouse construct was strongly activated by HNF1α coexpression, the human construct without binding consensus at BS-1 did not respond significantly (Fig. 4C). When the further upstream sequences with doublets of binding sites hBS-3 were included in the human construct Hs-pBmXh5kb, HNF1α transactivated its activity by twofold (Fig. 4D). Mouse constructs Mm-pHxh4kb and Mm-pBm5kb, embracing mBS-1 and -2 and mBS-3 and -4, respectively, were both transactivated by HNF1α (Fig. 4, E and F). In contrast, the minimal promoter construct Mm-pBgB1.3kb, which lacks mBS-3 and -4, was nonresponsive to HNF1α (Fig. 4F). The results demonstrated the functional relevance of the multiple HNF1 binding sites to both mouse and human Clcn5/CLCN5 gene loci, with species-dependent variation in the contribution of each site.

Hnf1α regulates expression of ClC-5 in proximal tubules in vivo. To verify that the Clcn5 gene is regulated by HNF1α in vivo, we measured its expression at the mRNA and protein levels in kidneys from Hnf1α-null mice (Fig. 5). The deletion of HNF1α was reflected by a significant decrease in Clcn5 mRNA (Fig. 5A) and Clc-5 protein (Fig. 5B) compared with wild-type Hnf1α controls. To further address the segment-specific regulation of ClC-5, and the role of HNF1α vs. HNF1β, which is also expressed in the distal nephron, we used microdissected segments obtained from Hnf1α kidneys (Fig. 5, C and D). Enrichment in specific markers validated the samples obtained from the proximal (AQP1) and more distal (NKCC2, AQP2) nephron segments (Fig. 5C; Supplemental Table 3). Quantitative analysis (qPCR) revealed that the deletion of HNF1α in PT segments was reflected by an ~60% decrease in Clcn5 mRNA expression, despite a significant upregulation of Hnf1β in these samples. In contrast, Hnf1α was much less abundant in distal segments, which dominantly expressed Hnf1β, and its deletion was not associated with a decrease in Clcn5 mRNA expression (Fig. 5D).

Regulation of ClC-5 expression in mPTC derived from Hnf1α kidneys. The direct effect of HNF1α on the expression of CIC-5 was analyzed in mPTC obtained from Hnf1α kidneys (Fig. 6). The expression of CIC-5 mRNA (Fig. 6A) and protein (Fig. 6B) was significantly reduced in mPTC from Hnf1α−/− compared with mPTC from Hnf1α+/+ kidneys. The transfection of Hnf1α−/− mPTC with wild-type HNF1α rescued the expression of ClC-5 to a normal level, whereas transfection with mock or mutant HNF1α had no significant effect. Of note, the rescue of CIC-5 expression in mPTC was paralleled by that of SGLT2, whereas the expression of SGLT1, which is not regulated by HNF1α in the mouse (29), was unchanged (data not shown).

DISCUSSION

In this study, we show that the transcription factor HNF1α positively regulates the expression of CIC-5 in the PT of the kidney. In silico prediction identified a number of conserved HNF1 binding sites within the 5′-regulatory regions of the CLCN5/Clcn5 genes, whose binding and transcriptional activities were confirmed in vivo and in vitro. Furthermore, we showed that the direct transcriptional regulation of CIC-5 by HNF1α was specific to the PT segment. Taken together, these data indicate that HNF1α is an essential regulator of the tissue-specific expression of the endosomal Cl−/H+ exchanger CIC-5 in absorptive epithelia. These results emphasize the role of HNF1α in the differentiation of the PT and the potential for renal manifestations associated with mutations of HNF1α in MODY3 patients.

The enrichment of HNF1 binding consensus sites in the CIC-5 gene locus stands among the mammalian CLC gene family, with no putative site identified in the loci of CIC-Ka and CIC-Kb, which are selectively expressed in distal nephron segments but not in the PT (15). CIC-4, which shares at least 80% sequence identity with CIC-5, does not contain any putative HNF1 binding sites but instead has GC-rich sequences characteristic of housekeeping genes (data not shown). These data suggest that tissue-specific transcriptional regulation sustains the specific roles played by members of the CLC gene family in higher organisms.
We demonstrate the tissue-specific distribution of ClC-5 during mouse development and nephrogenesis. In particular, ClC-5 is predominantly expressed in polarized absorptive epithelia such as the primitive gut, the mesonephric bud, and the extraembryonic yolk sac, which contains an extensive vesicular system similar to the structure of the renal PT (22). In the yolk sac, the expression of Clcn5 spatially and temporarily overlaps with that of Hnf1α (2), whereas there is a striking
overlap between the expression of the two genes in kidney and intestine epithelia at E14.5. In the earlier stage, HNF1α expression is shown to start only from E10.5 in the developing liver primordium, intestine, and mesonephros (29). By contrast, abundant expression of HNF1β precedes that of HNF1α in these organs (3) and therefore correlates better with the observed CIC-5 expression at E9–10. Accordingly, HNF1β may initiate CIC-5 expression during early organogenesis, and HNF1α may reinforce its predominant expression in absorptive tissues, and particularly in PT cells, at later stages of differentiation (17). The specific expression of CIC-5 in the myogenic lineage contrasted with its reputation of a gene highly variable phenotype. Of interest, a slight degree of disease of the young type 3 (MODY3) (9). The disease, cause a particular form of diabetes called maturity onset diabetes of the young type 3 (MODY3) (9). The disease, which is associated with a defect in insulin secretion that appears frequently in young patients, is characterized by a highly variable phenotype. Of interest, a slight degree of low-molecular-weight proteinuria is detected in a subset of patients harboring mutations in HNF1α and in Hnf1α KO mice (data not shown). The latter observation is consistent with the low-molecular-weight proteinuria detected in heterozygous carriers of mutations in CIC-5 (36, 43). By
extension, one could hypothesize that variants in TCF1 may modulate the phenotype of Dent’s disease.

Thus far, there is no evidence that HNF1α and HNF1β bind to different sequences, and a previous ChIP analysis of the mouse kidney revealed in vivo binding of both factors to every HNF1 binding site examined (11). Consistent with this, we observed that not only HNF1α but also HNF1β binds to the CLCN5/Clcn5 gene promoters and that their coexpressions enhance their promoter activities in vitro (data not shown). In the kidney, HNF1α is specifically expressed in PT segments whereas HNF1β is expressed in all tubular segments and CD (11, 29). Accordingly, the CIC-5 expression in the TAL and CD could be under the regulation of HNF1β rather than HNF1α, as supported by our segment-specific expression data (Fig. 5D). The renal-restricted inactivation (mainly in the TAL and CD) of HNF1β in mice resulted in renal cyst formation due to defective transcriptional activation of genes localized in the primary cilium of epithelial cells, whose mutations are individually responsible for cystic kidney diseases (11). Notably, small cysts are commonly observed in the cortex and medulla of the kidneys of patients with Dent’s disease (44). It is tempting to speculate that CIC-5 is another target of HNF1β in distal nephron segments, where CIC-5 may regulate the active trafficking of stereocilia membrane proteins. The expression of CIC-5 in the α-type intercalated cells could also be regulated by specific transcription factors involved in the maturation of these cells, including the forkhead transcription factor Foxi1 (16, 24).

Comparative analysis of the CLCN5/Clcn5 promoters revealed that transcriptional activities of the mouse 5′ sequences are strikingly more potent than that of human. The difference may arise from the fact that the mouse first intron sequence harbors effective enhancer elements (38), whereas the human sequence contains suppressor elements (14). The mouse HNF1 binding consensus at +1931 within this enhancer region is lost in the human orthologous locus, and the transcriptional response to HNF1α coexpression is abolished. Instead, a specific HNF1 binding site with strongest binding affinity is found in the human 5′ sequences. Conserved biological functions are under the control of evolutionarily preserved regulatory mechanisms in many cases, although evolution may also create novel configurations by deletions or insertions of relatively large fragment of genomic DNA. This must have been the case with CIC-5, where mouse and human genomic structures have been remodeled: the binding manner of HNF1α is known to be variable between these species, despite the highly conserved function of the transcription factor (25). Nevertheless, given the relatively large number of HNF1 binding sites that we could identify in both the human and mouse, it is difficult to imagine that the loss of a single site would have a dramatic consequence on the control of gene expression.

In conclusion, the present study established that HNF1α positively regulates the transcription of CIC-5 in the PT, and its contribution is conserved between mouse and human with some species diversity. Our data also demonstrate a wider functional distribution of CIC-5 during development than was anticipated from the phenotype of human patients with Dent’s disease and its mouse models. These data give insights into the mechanisms governing epithelial differentiation, in parallel to other transcription factors (e.g., ZONAB) that are associated with epithelial cell proliferation during development (19).

ACKNOWLEDGMENTS

We thank Dr. C. Cheret, A. Doyan, Dr. Y. Ninomiya, Dr. A. Reimann, and H. Debaix for help and advice on transfection, ChIP analysis protocols, and expression studies.

GRANTS

K. Tanaka was supported by the UK National Kidney Research Fund. O. Devuyst was financially supported by the Belgian agencies Fonds de la Recherche Scientifique and Fonds de la Recherche Scientifique Médicale, the “Fondation Alphonse & Jean Forton,” a Concerted Research Action (05/10-328), an Inter-university Attraction Pole (IUAP P6/05), the DIANE project (Communauté Française de Belgique), and the EUERFRON (FP7, GA 201590) program of the European Community. M. Pontoglio was financially supported by the Fondation pour la Recherche Médicale and the Fondation Bettencourt-Schueller (Prix Coup d’Elan).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.
REFERENCES

9. Ellard S, Coleough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat 27: 854–869, 2006.

