"Single machine scheduling with release dates"

Goemans, Michel X. ; Queyranne, Maurice ; Schulz, Andreas S. ; Skutella, Martin ; Wang, Yaoguang

ABSTRACT

We consider the scheduling problem of minimizing the average weighted completion time of n jobs with release dates on a single machine. We first study two linear programming relaxations of the problem, one based on a time-indexed formulation, the other on a completion-time formulation. We show their equivalence by proving that a $O(n \log n)$ greedy algorithm leads to optimal solutions to both relaxations. The proof relies on the notion of mean busy times of jobs, a concept which enhances our understanding of these LP relaxations. Based on the greedy solution, we describe two simple randomized approximation algorithms, which are guaranteed to deliver feasible schedules with expected objective value within factors of 1.7451 and 1.6853, respectively, of the optimum. They are based on the concept of common and independent alpha-points, respectively. The analysis implies in particular that the worst-case relative error of the LP relaxations is at most 1.6853, and we provide instances showin...

CITE THIS VERSION

Goemans, Michel X. ; Queyranne, Maurice ; Schulz, Andreas S. ; Skutella, Martin ; Wang, Yaoguang. Single machine scheduling with release dates. CORE Discussion Papers ; 1999/61 (1999) http://hdl.handle.net/2078.1/4073
CORE DISCUSSION PAPER
99XX

SINGLE MACHINE SCHEDULING WITH RELEASE DATES

Michel X. Goemans¹ Maurice Queyranne ²
Andreas S. Schulz³ Martin Skutella⁴ Yaoguang Wang⁵

October 1999

Abstract
We consider the scheduling problem of minimizing the average weighted completion time of \(n \) jobs with release dates on a single machine. We first study two linear programming relaxations of the problem, one based on a time-indexed formulation, the other on a completion-time formulation. We show their equivalence by proving that a \(O(n \log n) \) greedy algorithm leads to optimal solutions to both relaxations. The proof relies on the notion of mean busy times of jobs, a concept which enhances our understanding of these LP relaxations. Based on the greedy solution, we describe two simple randomized approximation algorithms, which are guaranteed to deliver feasible schedules with expected objective value within factors of 1.7451 and 1.6853, respectively, of the optimum. They are based on the concept of common and independent \(\alpha \)-points, respectively. The analysis implies in particular that the worst-case relative error of the LP relaxations is at most 1.6853, and we provide instances showing that it is at least \((e^4 - 1) \approx 1.5819 \). Both algorithms may be derandomized, their deterministic versions running in \(O(n^2) \) time. The randomized algorithms also apply to the on-line setting, in which jobs arrive dynamically over time and one must decide which job to process without knowledge of jobs that will be released afterwards.

Keywords: approximation algorithm, LP relaxation, scheduling, online algorithm
1Research partially done while the author was at C.O.R.E., 34 Voie du Roman Pays, 1348 Louvain-La-Neuve, Belgium. Current address: MIT, Room 2-351, Cambridge, MA 02139, USA. Email: goemans@math.mit.edu.

2Supported in part by a research grant from NSERC (the Natural Sciences and Research Council of Canada) and by the UNILU.RIM, S.p.a. (Società per l'Università nel riminese). University of British Columbia, Faculty of Commerce and Business Administration, Vancouver, B.C., Canada V6T 1Z2. Email: maurice.queyranne@commerce.ubc.ca.

3M.I.T., Sloan School of Management and Operations Research Center, E53-361, 30 Wadsworth St, Cambridge, MA 02139, USA. Email: schulz@mit.edu.

4Supported in part by DONET within the frame of the TMR Programme (contract number ERB-FMRX-CT98-0202) while staying at C.O.R.E., Louvain-La-Neuve, Belgium, for the academic year 1998/99. Current address: Technische Universität Berlin, Fachbereich Mathematik, MA 6-1, Straße des 17. Juni 136, 10623 Berlin, Germany. Email: skutella@math.tu-berlin.de.

5Supported by a research fellowship from Max-Planck Institute for Computer Science, Saarbrücken, Germany. Current address: PeopleSoft Inc., San Mateo, CA, 94404, USA. Email: Yaoguang_Wang@peoplesoft.com.
1 Introduction

We study the single-machine scheduling problem with release dates and in which the objective is to minimize a weighted sum of completion times. It is defined as follows. A set $N = \{1, 2, \ldots, n\}$ of n jobs has to be scheduled on a single disjunctive machine. Job j has a processing time $p_j > 0$ and is released at time $r_j \geq 0$. We assume that release dates and processing times are integral. The completion time of job j in a schedule is denoted by C_j. The goal is to find a nonpreemptive schedule that minimizes $\sum_{j \in N} w_j C_j$, where the w_j's are given positive weights. In the classical scheduling notation [11], this problem is denoted by $1|r_j| \sum w_j C_j$. It is strongly NP-hard, even if $w_j = 1$ for all jobs j [16].

One of the key ingredients in the design and analysis of approximation algorithms as well as in the design of implicit enumeration methods is the choice of a bound on the optimum value. Several linear programming based as well as combinatorial lower bounds have been proposed for this well studied scheduling problem, see for example, Dyer and Wolsey [7], Queyranne [23], and Queyranne and Schulz [24], as well as Belouadah, Posner and Potts [3]. The LP relaxations involve a variety of different types of variables which, e.g., either express whether job j is completed at time t (nonpreemptive time-indexed relaxation), or whether it is being processed at time t (preemptive time-indexed relaxation), or when job j is completed (completion time relaxation). Dyer and Wolsey show that the nonpreemptive time-indexed relaxation is stronger than the preemptive time-indexed relaxation. We will show that the latter relaxation is equivalent to the completion time relaxation that makes use of the so-called shifted parallel inequalities. In fact, it turns out that the polyhedron defined by these inequalities is supermodular and hence one can optimize over it by using the greedy algorithm. A very similar situation arises in [25]. The greedy solution may actually be interpreted in terms of the following preemptive schedule, which we call the LP schedule: at any point in time it schedules among the available jobs one with the largest ratio of weight to processing time. Uma and Wein [38] point out that the value of this LP solution coincides with one of the combinatorial bounds of Belouadah, Posner and Potts based on the idea of allowing jobs to be split into smaller pieces that can be scheduled individually.

We show that the optimum value of $1|r_j| \sum w_j C_j$ is at most 1.6853 times the lower bound given by any of these three equivalent relaxations—the preemptive time-indexed relaxation, the completion time relaxation or the combinatorial relaxation in [3]. We prove this result on the quality of these relaxations by converting the (preemptive) LP schedule into a nonpreemptive schedule. This technique leads to approximation algorithms for $1|r_j| \sum w_j C_j$. Recall that a ρ-approximation algorithm is a polynomial-time algorithm guaranteed to deliver a solution of cost at most ρ times the
optimum value.

The technique of converting preemptive schedules to nonpreemptive schedules in the design of approximation algorithms was introduced by Phillips, Stein and Wein [20]. More specifically, for \(1 | r_j | \sum w_j C_j \) they showed that list scheduling in order of the completion times of a given preemptive schedule produces a nonpreemptive schedule while increasing the total weighted completion time by at most a factor of 2. In the same paper they also introduced a concept of \(\alpha \)-points. This notion was also used by Hall, Shmoys and Wein [12], in connection with the nonpreemptive time-indexed relaxation of Dyer and Wolsey to design approximation algorithms in various scheduling environments. For our purposes, the \(\alpha \)-point of job \(j \) in a given preemptive schedule is the first point in time at which an \(\alpha \)-fraction of \(j \) has been completed. When one chooses different values of \(\alpha \), sequencing in order of nondecreasing \(\alpha \)-points in a same preemptive schedule may lead to different nonpreemptive schedules. This increased flexibility led to improved approximation algorithms when Chekuri, Motwani, Natarajan and Stein [5] for \(1 | r_j | \sum C_j \) and Goemans [10] for \(1 | r_j | \sum w_j C_j \) chose \(\alpha \) at random and analyzed the expected performance of the resulting randomized algorithms. We will show that, using a common value of \(\alpha \) for all jobs and an appropriate probability distribution, sequencing in order of \(\alpha \)-points of the LP schedule has expected performance no worse than 1.7451 times the optimal preemptive time-indexed LP value. We also prove that by using an individual \(\alpha_j \) for every job \(j \), one can improve this bound to a factor of 1.6853. Our algorithms are inspired by and partly resemble the algorithms of Hall et al. [12] and Chekuri et al. [5]. In contrast to Hall et al. we exploit the preemptive time-indexed LP relaxation which on the one hand provides us with highly structured optimal solutions and on the other hand enables us to work with mean busy times. We also use random \(\alpha \)-points. The algorithm of Chekuri et al. starts from an arbitrary preemptive schedule and makes use of random \(\alpha \)-points. However, they relate the value of the resulting \(\alpha \)-schedule to that of the given preemptive schedule, and not to that of an underlying LP relaxation. While their approach gives better approximations for \(1 | r_j | \sum C_j \) and structural insights on limits of the power of preemption, the link of the LP schedule to the preemptive time-indexed LP relaxation helps us to obtain good approximations for the total weighted completion time.

Variants of our algorithms also work on-line when jobs arrive dynamically over time and, at each point in time, one has to decide which job to process without knowledge of jobs that will be released afterwards. Even in this on-line setting, we compare the value of the computed schedule to the optimal (off-line) schedule and derive the same bounds (competitive ratios) as in the off-line setting. See Table 1 for an account of the evolution of off-line and on-line approximation results for the single machine problem under consideration.

The main ingredient to obtain the results presented in this paper is the
<table>
<thead>
<tr>
<th>Reference and/or type of schedule</th>
<th>Off-line deterministic</th>
<th>On-line randomized</th>
<th>On-line deterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillips et al. [20]</td>
<td>$16 + \epsilon$</td>
<td>$4 + \epsilon$</td>
<td></td>
</tr>
<tr>
<td>Hall et al. [12]</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hall et al. [13]</td>
<td>2.8854</td>
<td>2.8854</td>
<td></td>
</tr>
<tr>
<td>Chakrabarti et al. [4]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-schedule for $\alpha = 1/\sqrt{2}$ [10]</td>
<td>2.4143</td>
<td>2.4143</td>
<td></td>
</tr>
<tr>
<td>Best α-schedule [10]</td>
<td>2</td>
<td>1.7451</td>
<td></td>
</tr>
<tr>
<td>(random) (α_j)-schedule</td>
<td>1.6853</td>
<td>1.6853</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Summary of approximation bounds for $1|r_j|\sum w_jC_j$. The results discussed in this paper are below the second double line. An α-schedule is obtained by sequencing the jobs in order of nondecreasing α-points of the LP schedule. The use of job-dependent α_j’s yields an (α_j)-schedule. For the unit-weight problem $1|r_j|\sum C_j$, the first constant-factor approximation algorithm is due to Phillips, Stein and Wein [20]. It has performance ratio 2, and it also works on-line and is optimal for deterministic on-line algorithms. Chekuri, Motwani, Natarajan and Stein [5] then gave a randomized $e/(e-1)$-approximation algorithm, which is optimal for randomized on-line algorithms.

exploitation of the structure of the LP schedule. Not surprisingly, the LP schedule does not solve the strongly NP-hard [15] preemptive version of the problem, $1|r_j, pmtn|\sum w_jC_j$. However, we show that the LP schedule solves optimally the preemptive problem with the related objective function $\sum w_jM_j$, where M_j is the mean busy time of job j, i.e., the average point in time at which the machine is busy processing j. Observe that, although $1|r_j, pmtn|\sum w_jC_j$ and $1|r_j, pmtn|\sum w_jM_j$ are equivalent in the non-preemptive case (since $C_j = M_j + \frac{p_j}{2}$), they are not so when considering preemptive schedules.

The approximation techniques presented in this paper have also proved useful for more general scheduling problems. For the problem with precedence constraints $1|r_j, prec|\sum w_jC_j$, sequencing jobs in order of random α-points based on an optimum solution to a time-indexed LP relaxation leads to a 2.7183-approximation algorithm [27]. A 2-approximation algorithm for identical parallel machine scheduling $P|r_j|\sum w_jC_j$ is given in [28]; the result is based on a time-indexed LP relaxation whose optimum solution can be interpreted as a preemptive schedule on a fast single machine; jobs are then assigned randomly to the machines and sequenced in order of random α_j-points of this preemptive schedule. For the corresponding scheduling problem on unrelated parallel machines $R|r_j|\sum w_jC_j$, a perfor-
mance guarantee of 2 can be obtained by randomized rounding based on a convex quadratic programming relaxation [33], which is inspired by time-indexed LP relaxations like the one discussed herein [28]. We refer to [32] for a detailed discussion of the use of α-points for machine scheduling problems.

Significant progress has recently been made in understanding the approximability of scheduling problems with average weighted completion time objective. Skutella and Woeginger [34] develop a polynomial-time approximation scheme for scheduling identical parallel machines in the absence of release dates \(P|\sum w_jC_j \). Subsequently, several research groups have found polynomial-time approximation schemes for problems with release dates such as \(1|r_j|\sum C_j \) and \(P|r_j|\sum w_jC_j \), see the resulting joint conference proceedings publication [1] for details.

We now briefly discuss some practical consequences of our work. Savelsbergh, Uma and Wein [26] and Uma and Wein [38] performed experimental studies to evaluate, in part, the quality of the LP relaxation and approximation algorithms studied herein, for \(1|r_j|\sum w_jC_j \) and related scheduling problems. The first authors report that, except for instances that were deliberately constructed to be hard for this approach, the present formulation and algorithms “deliver surprisingly strong experimental performance.” They also note that “the ideas that led to improved approximation algorithms also lead to heuristics that are quite effective in empirical experiments; furthermore [...] they can be extended to give improved heuristics for more complex problems that arise in practice.” While the authors of the follow-up study [38] report that a simple greedy heuristic often outperforms the LP-based heuristics, they also find that when coupled with local improvement the latter generally produce the best solutions. In contrast, the practical value of the approximation schemes mentioned in the preceding paragraph remains unclear.

The contents of this paper are as follows. Section 2 is concerned with the LP relaxations and their relationship. We begin with a presentation and discussion of the LP schedule. In Section 2.1 we then review a time indexed formulation introduced by Dyer and Wolsey [7] and show that it is solved to optimality by the LP schedule. In Section 2.2 we present the mean busy time relaxation (or completion time relaxation) and prove, among other properties, its equivalence to the time indexed formulation. Section 2.3 explores some polyhedral consequences, in particular the fact that the mean busy time relaxation is (up to scaling by the job processing time) a supermodular linear program and that the “job-based” method for constructing the LP schedule is equivalent to the corresponding greedy algorithm. Section 3 then deals with approximation algorithms derived from these LP relaxations. In Section 3.1 we present a method for constructing \((\alpha_j)\)-schedules, which allows us to analyze and bound the job completion times in the resulting schedules. In Section 3.2 we derive simple bounds for \(\alpha\)-schedules and \((\alpha_j)\)-schedules, using a deterministic common \(\alpha\) or uniformly distributed
random \(\alpha_j \)'s. Using appropriate probability distributions, we improve the approximation bound to the best known values of 1.7451 for \(\alpha \)-schedules in Section 3.3 and of 1.6853 for \((\alpha_j)\)-schedules in Section 3.4. We also indicate how these algorithms can be derandomized in \(O(n^2) \) time for constructing deterministic schedules with these performance guarantees. In Section 3.5 we show that our randomized approximations also apply in an on-line setting and, in Section 3.6 we present a class of "bad" instances for which the ratio of the optimum objective value and our LP bound is arbitrarily close to \(\frac{\alpha}{1-\alpha} \approx 1.5819 \). This constant defines a lower bound on the approximation results that can be obtained by the present approach. We conclude in Section 4 by discussing some related problems and open questions.

2 Relaxations

In this section, we present two linear programming relaxations for \(1|r_j|\sum w_jC_j \). We show their equivalence and discuss some polyhedral consequences.

For both relaxations, the following preemptive schedule plays a crucial role: at any point in time, schedule (preemptively) the available job with highest \(w_j/p_j \) ratio. We assume (throughout the paper) that the jobs are indexed in order of nonincreasing ratios \(\frac{w_1}{p_1} \geq \frac{w_2}{p_2} \geq \cdots \geq \frac{w_n}{p_n} \) and ties are broken according to this order. Therefore, whenever a job is released, the job being processed (if any) is preempted if the released job has a smaller index. We refer to this preemptive schedule as the LP schedule. See Figure 1 for an example of an LP schedule.

![Figure 1: An LP schedule for a 4-job instance](image)

Notice that this LP schedule does not in general minimize \(\sum j w_jC_j \) over all preemptive schedules. This should not be surprising since the preemptive problem \(1|r_j|\sum w_jC_j \) is (strongly) NP-hard [15]. It can be shown, however, that the total weighted completion time of the LP schedule is always within a factor of 2 of the optimum value for \(1|r_j|\sum w_jC_j \) and this bound is tight, see [29].
The LP schedule can be constructed in $O(n \log n)$ time. To see this, we now describe an implementation, which may be seen as “dynamic” (event-oriented) or, using the terminology of [18], “machine-based” and can even be constructed on-line while the jobs dynamically arrive over time. The algorithm keeps a priority queue [6] of the currently available jobs that have not yet been completely processed, with the ratio w_j/p_j as key and with another field indicating the remaining processing time. A scheduling decision is made at only two types of events: when a job is released, and when a job completes its processing. In the former case, the released job is added to the priority queue. In the latter case, the completed job is removed from the priority queue. Then, in either case, the top element of the priority queue (the one with highest w_j/p_j ratio) is processed; if the queue is empty, then move on to the next job release; if there is none, then all jobs have been processed and the LP schedule is complete. This implementation results in a total of $O(n)$ priority queue operations. Since each such operation can be implemented in $O(\log n)$ time [6], the algorithm runs in $O(n \log n)$ time.

The LP schedule can also be defined in a somewhat different manner, which may be seen as “static” or “job-based”. Consider the jobs one at a time in order of nonincreasing w_j/p_j. Schedule each job j as early as possible starting at r_j and preempting it whenever the machine is busy processing another job (that thus came earlier in the w_j/p_j ordering). This point-of-view leads to an alternate $O(n \log n)$ construction of the LP schedule.

2.1 Time-Indexed Relaxation

Dyer and Wolsey [7] investigate several types of relaxations of $\sum w_j C_j$, the strongest ones being time-indexed. We consider the weaker of their two time-indexed formulations, which they call formulation (D). It uses two types of variables: $y_{jr} = 1$ if job j is being processed during time interval $[r, r+1)$, and zero otherwise; and t_j represents the start time of job j. For simplicity, we add p_j to t_j and replace the resulting expression by C_j; this gives an equivalent relaxation.
\[Z_D = \min \sum_j w_j C_j \]

subject to

\[\begin{align*}
\sum_{j : \tau_j \leq \tau} y_{j\tau} &\leq 1 & \tau = 0, 1, \ldots, T \\
\sum_{\tau = r_j}^{T} y_{j\tau} &= p_j & j \in N \\
C_j &= \frac{1}{2}p_j + \frac{1}{p_j} \sum_{\tau = r_j}^{T} \left(\tau + \frac{1}{2} \right) y_{j\tau} & j \in N \\
0 &\leq y_{j\tau} & j \in N, \tau = r_j, r_j + 1, \ldots, T
\end{align*} \]

(1)

where \(T \) is an upper bound on the makespan of an optimal schedule (for example, \(T = \max_{j \in N} r_j + \sum_{j \in N} p_j \)). We refer to this relaxation as the preemptive time-indexed relaxation. The expression for \(C_j \) given in (1) corresponds to the correct value of the completion time if job \(j \) is not preempted; an interpretation in terms of mean busy times is given in the next section for the case of preemptions. Observe that the number of variables of this formulation is only pseudo-polynomial. If we eliminate \(C_j \) from the relaxation by using (1), we obtain a transportation problem [7] and, as a result, \(y_{j\tau} \) can be assumed to be integral:

Lemma 2.1. There exists an optimal solution to (D) for which \(y_{j\tau} \in \{0, 1\} \) for all \(j \) and \(\tau \).

As indicated in [7], it follows from the work of Posner [21] that (D) can be solved in \(O(n \log n) \) time. Actually, one can derive a feasible solution to (D) from the LP schedule by letting \(y_{j\tau}^{LP} \) be equal to 1 if job \(j \) is being processed in \([\tau, \tau + 1) \), and 0 otherwise.

Theorem 2.2. The solution \(y^{LP} \) derived from the LP schedule is an optimum solution to (D).

Proof. The proof is based on an interchange argument. Consider any optimum 0/1-solution \(y^* \) to (D). If there exist \(j < k \) and \(\sigma > \tau \geq r_j \) such that \(y_{j\sigma} = y_{k\tau} = 1 \), then by replacing \(y_{j\sigma} \) and \(y_{k\tau} \) by 0, and \(y_{j\tau}^* \) and \(y_{k\sigma}^* \) by 1, we obtain another feasible solution with an increase in the objective function of \((\sigma - \tau)
\left(\frac{w_k}{p_k} - \frac{w_j}{p_j} \right) \leq 0 \). The resulting solution must therefore also be optimum. By repeating this interchange argument, we derive that there exists an optimum solution \(y^* \) such that there do not exist \(j < k \) and \(\sigma > \tau \geq r_j \) such that \(y_{j\sigma}^* = y_{k\tau}^* = 1 \). This implies that the solution \(y^* \) must correspond to the LP schedule. \(\Box \)
In particular, despite the immense number of variables in the LP relaxation \((D)\) an optimum solution can be obtained efficiently. We will make use of this fact as well as of the special structure of the LP schedule in the design and analysis of the approximation algorithms, see Section 3. We note again that in spite of its nice properties the preemptive time-indexed LP relaxation \((D)\) solves in general neither \(1 \cdot |r| \sum w_j C_j\) nor \(1 \cdot |r|, pmtn | \sum w_j C_j\). In the former case, the processing of a job in the LP solution may fail to be consecutive; in the latter case equation (1) does not necessarily define the completion time of a job in the preemptive LP schedule, as will be shown in the next lemma.

\[2.2 \text{ Mean Busy Time Relaxation}\]

Given any preemptive schedule, let \(I_j\) be the indicator function of the processing of job \(j\) at time \(t\), i.e., \(I_j(t) = 1\) if the machine is processing \(j\) at time \(t\) and 0 otherwise. To avoid pathological situations, we require that, in any preemptive schedule, when the machine starts processing a job, it does so for a positive amount of time. Given any preemptive schedule, we define the mean busy time \(M_j\) of job \(j\) to be the average time at which the machine is processing \(j\), i.e.,

\[
M_j = \frac{1}{p_j} \int_{r_j}^{T} I_j(t) \, t \, dt.
\]

For instance, in the example given in Figure 1, which will be used throughout the text the mean busy time of job 4 is 5.5.

We first establish some important properties of \(M_j\) in the next two lemmas.

Lemma 2.3. For any preemptive schedule, let \(C_j\) and \(M_j\) denote the completion and mean busy time, respectively, of job \(j\). Then for any job \(j\), we have \(M_j + \frac{1}{2}p_j \leq C_j\), with equality if and only if job \(j\) is not preempted.

Proof. If job \(j\) is processed without preemption, then \(I_j(t) = 1\) if \(C_j - p_j \leq t < C_j\) and 0 otherwise; therefore \(M_j + \frac{1}{2}p_j = C_j\). Otherwise job \(j\) is not processed during some interval(s) of total length \(L > 0\) between times \(C_j - p_j\) and \(C_j\). Since \(\int_{r_j}^{T} I_j(t) \, dt = p_j\), job \(j\) must be processed during some time interval(s) of the same total length \(L\) before \(C_j - p_j\). Therefore,

\[
M_j = \frac{1}{p_j} \int_{r_j}^{C_j} I_j(t) \, t \, dt < \frac{1}{p_j} \int_{C_j-p_j}^{C_j} t \, dt = C_j - \frac{1}{2}p_j
\]

and the proof is complete. \(\Box\)

Let \(S \subseteq N\) denote a set of jobs and define

\[
p(S) := \sum_{j \in S} p_j \quad \text{and} \quad r_{\min}(S) := \min_{j \in S} r_j.
\]
Let $I_S(t) = \sum_{j \in S} I_j(t)$. Since, by the machine capacity constraint, $I_S(t) \in \{0, 1\}$ for all t, we may view I_S as the indicator function for job set S. We can thus define the mean busy time of set S as $M_S := \frac{1}{p(S)} \int_0^T I_S(t) \, t \, dt$. Note that we have

$$p(S)M_S = \int_0^T \left(\sum_{j \in S} I_j(t) \right) t \, dt = \sum_{j \in S} \int_0^T I_j(t) \, t \, dt = \sum_{j \in S} p_j M_j .$$

So, and unlike its start and completion time, the mean busy time of a job set is a simple nonnegative combination of the mean busy times of its elements. One consequence of this observation is the validity of the shifted parallel inequalities (3) below, first established in [22] (using completion times instead of mean busy times and, accordingly, with right-hand side increased by $\frac{1}{2} \sum_{j \in S} p_j^2$).

Lemma 2.4. For any set S of jobs and any preemptive schedule with mean busy time vector M, we have

$$\sum_{j \in S} p_j M_j \geq p(S) \left(r_{\min}(S) + \frac{1}{2} p(S) \right)$$

and equality holds if and only if all the jobs in S are scheduled without interruption from $r_{\min}(S)$ to $r_{\min}(S) + p(S)$.

Proof. Note that $\sum_{j \in S} p_j M_j = p(S)M_S = \int_{r_{\min}(S)}^{r_{\min}(S)+p(S)} I_S(t) \, t \, dt$; that $I_S(t) = 0$ for $t < r_{\min}(S)$ and $I_S(t) \leq 1$ for $t \geq r_{\min}(S)$; and that $\int_{r_{\min}(S)}^{r_{\min}(S)+p(S)} I_S(t) \, dt = p(S)$. Under these constraints, M_S is minimized when $I_S(t) = 1$ for $r_{\min}(S) \leq t < r_{\min}(S) + p(S)$ and 0 otherwise. Therefore M_S is uniquely minimized among all feasible preemptive schedules when all the jobs in S are continuously processed from $r_{\min}(S)$ to $r_{\min}(S) + p(S)$. This minimum value is $p(S)(r_{\min}(S) + \frac{1}{2} p(S))$ and is a lower bound for $\sum_{j \in S} p_j M_j$ in any feasible preemptive schedule. \qed

As a result of Lemma 2.4, the following linear program provides a lower bound on the optimum value of $1 | r_j, pmtn | \sum w_j C_j$, and hence on that of $1 | r_j | \sum w_j C_j$.

$$Z_R = \min \sum_{j \in N} w_j \left(M_j + \frac{1}{2} p_j \right)$$

subject to

(R) \hspace{1cm} \sum_{j \in S} p_j M_j \geq p(S) \left(r_{\min}(S) + \frac{1}{2} p(S) \right) \quad S \subseteq N .$$

The proof of the following theorem and later developments use the notion of canonical decompositions [9]. For a set S of jobs, consider the schedule
which processes jobs in S as early as possible, say, in order of their release
dates. This schedule induces a partition of S into $\{S_1, \ldots, S_k\}$ such that
the machine is busy processing jobs in S exactly in the disjoint intervals
$[r_{\min}(S_\ell), r_{\min}(S_\ell) + p(S_\ell)]$ for $\ell = 1, \ldots, k$. We refer to this partition as
the canonical decomposition of S. A set is canonical if it is identical to its
canonical decomposition, i.e., if its canonical decomposition is $\{S\}$. Thus a
set S is canonical if and only if it is feasible to schedule all its jobs in the
time interval $[r_{\min}(S), r_{\min}(S) + p(S)]$. Note that the set $N = \{1, 2, 3, 4\}$
in our example is canonical whereas the subset $\{1, 2, 3\}$ is not; it has the
decomposition $\{\{3\}, \{1, 2\}\}$. Let

$$h(S) := \sum_{\ell=1}^{k} p(S_\ell) \left(r_{\min}(S_\ell) + \frac{1}{2} p(S_\ell) \right)$$

(4)

where $\{S_1, \ldots, S_k\}$ is the canonical decomposition of $S \subseteq N$. Then Lemma 2.4
implies that $\sum_{j \in S} p_j M_j \geq h(S)$ is a valid inequality for the mean busy time
vector of any preemptive schedule. In other words, relaxation (R) may be
written as:

$$\min \left\{ \sum_{j \in N} w_j \left(M_j + \frac{1}{2} p_j \right) : \sum_{j \in S} p_j M_j \geq h(S) \text{ for all } S \subseteq N \right\}.$$

Theorem 2.5. Let M_{LP}^j be the mean busy time of job j in the LP schedule.
Then M_{LP}^j is an optimum solution to (R).

Proof. By Lemma 2.4, M_{LP}^j is a feasible solution for (R).

To prove optimality of M_{LP}^j, we construct a lower bound on the optimum
value of (R) and show that it is equal to the objective function value of
M_{LP}^j. Recall that the jobs are indexed in nonincreasing order of the w_j/p_j
ratios, and let $[\bar{i}] := \{1, 2, \ldots, \bar{i}\}$ and $S_{\bar{i}1}, \ldots, S_{\bar{k}1}$ denote the canonical
decomposition of $[\bar{i}]$. Observe that for any vector $M = (M_j)_{j \in N}$ we have

$$\sum_{j \in N} w_j M_j = \sum_{i=1}^{n} \left(\frac{w_i}{p_i} - \frac{w_{i+1}}{p_{i+1}} \right) \sum_{j \in \bar{i}} p_j M_j = \sum_{i=1}^{n} \left(\frac{w_i}{p_i} - \frac{w_{i+1}}{p_{i+1}} \right) \sum_{\ell=1}^{k(i)} \sum_{j \in S_{\bar{i}}^\ell} p_j M_j$$

(5)

where we let $w_{n+1}/p_{n+1} = 0$. We have therefore expressed $\sum_{j \in N} w_j M_j$ as a
nonnegative combination of expressions $\sum_{j \in S_{\bar{i}}^\ell} p_j M_j$ over canonical sets.

By construction of the LP schedule, the jobs in any of these canonical sets
$S_{\bar{i}}^\ell$ are continuously processed from $r_{\min}(S_{\bar{i}}^\ell)$ to $r_{\min}(S_{\bar{i}}^\ell) + p(S_{\bar{i}}^\ell)$ in the LP
schedule. Thus, for any feasible solution M to (R) and any such canonical
set $S_{\bar{i}}^\ell$ we have

$$\sum_{j \in S_{\bar{i}}^\ell} p_j M_j \geq h(S_{\bar{i}}^\ell) = p(S_{\bar{i}}^\ell) \left(r_{\min}(S_{\bar{i}}^\ell) + \frac{1}{2} p(S_{\bar{i}}^\ell) \right) = \sum_{j \in S_{\bar{i}}^\ell} p_j M_{LP}^j$$
where the last equation follows from Lemma 2.4. Combining this with (5), we derive a lower bound on \(\sum_j w_j M_j \) for any feasible solution \(M \) to (R), and this lower bound is attained by the LP schedule. \(\square \)

From Theorems 2.2 and 2.5, we derive that the values of the two relaxations \((D)\) and \((R)\) are equal.

Corollary 2.6. The LP relaxations \((D)\) and \((R)\) of \(1|r_j| \sum w_j C_j\) yield the same optimal objective value, i.e., \(Z_D = Z_R \), for any weights \(w \geq 0 \). This value can be computed in \(O(n \log n) \) time.

Proof. For the equivalence of the lower bounds, note that the mean busy time \(M_j^{LP} \) of any job \(j \) in the LP schedule can be expressed as

\[
M_j^{LP} = \frac{1}{p_j} \sum_{\tau=r_j}^T y_{j\tau}^{LP} \left(\tau + \frac{1}{2} \right),
\]

where \(y^{LP} \) is the solution to \((D)\) derived from the LP schedule. The result then follows directly from Theorems 2.2 and 2.5. We have shown earlier that the LP schedule can be constructed in \(O(n \log n) \) time. \(\square \)

Although the LP schedule does not necessarily minimize \(\sum_j w_j C_j \) over the preemptive schedules, Theorem 2.5 states that it minimizes \(\sum_j w_j M_j \) over the preemptive schedules. Note also that, because of Lemma 2.3, the LP schedule provides an optimum solution to both the preemptive and non-preemptive problems \(1|r_j| \sum w_j C_j \) and \(1|r_j| \sum w_j C_j \) whenever this LP schedule does not preempt any job. For example, this is the case if all processing times are equal to 1 or if all jobs are released at the same time. Thus, the LP schedule provides an optimum solution to problems \(1|r_j, \ p_j = 1| \sum w_j C_j \) and to \(1| \sum w_j C_j \). This was already known. In the latter case it coincides with Smith’s ratio rule [35]; see Queyranne and Schulz [25] for the former case.

2.3 Polyhedral Consequences

We now consider some polyhedral consequences of the preceding results. Let \(P_D^\infty \) be the feasible region defined by the constraints of relaxation \((D)\) when \(T = \infty \), i.e.,

\[
P_D^\infty := \{ y \geq 0 : \sum_{j \mid r_j \leq \tau} y_{j\tau} \leq 1 \text{ for } \tau \in \mathbb{N}_t, \sum_{\tau \geq r_j} y_{j\tau} = p_j \text{ for all } j \in N \}.
\]

In addition, we denote by \(P_R := \{ M \in \mathbb{R}^N : \sum_{j \in S} p_j M_j \geq h(S) \text{ for all } S \subseteq N \} \) the polyhedron defined by the constraints of relaxation \((R)\).

Theorem 2.7.
(i) Polyhedron P_R is the convex hull of the mean busy time vectors M of all preemptive schedules. Moreover, every vertex of P_R is the mean busy time vector of an LP schedule.

(ii) Polyhedron P_R is also the image of P_D^∞ in the space of the M-variables under the linear mapping $\mathcal{M} : y \mapsto \mathcal{M}(y) \in \mathbb{R}^N$ defined by

$$\mathcal{M}(y)_j = \frac{1}{p_j} \sum_{\tau \geq r_j} y_{j\tau} \left(\tau + \frac{1}{2} \right) \quad \text{for all } j \in N.$$

Proof. (i) Lemma 2.4 implies that the convex hull of the mean busy time vectors M of all feasible preemptive schedules is contained in P_R. To show the reverse inclusion, it suffices to show that (a) every extreme point of P_R corresponds to a preemptive schedule; and (b) every extreme ray of P_R is a direction of recession for the convex hull of mean busy time vectors. Property (a) and the second part of statement (i) follow from Theorem 2.5 and the fact that every extreme point of P_R is the unique minimizer of $\sum_{j \in N} w_j M_j$ for some $w \geq 0$. For (b), note that the extreme rays of P_R are the n unit vectors of \mathbb{R}^N. An immediate extension to preemptive schedules and mean busy times of results in Balas [2] implies that these unit vectors of \mathbb{R}^N are directions of recession for the convex hull of mean busy time vectors. This completes the proof of (i).

(ii) We first show that the image $\mathcal{M}(P_D^\infty)$ of P_D^∞ is contained in P_R. For this, let y be a vector in P_D^∞ and $S \subseteq N$ with canonical decomposition $\{S_1, \ldots, S_k\}$. By definition of $\mathcal{M}(y)_j$, we have

$$\sum_{j \in S} p_j \mathcal{M}(y)_j = \sum_{j \in S} \sum_{\tau \geq r_j} y_{j\tau} \left(\tau + \frac{1}{2} \right) \geq \sum_{\ell=1}^{k} \sum_{\tau = r_{\min}(S_\ell)}^{r_{\min}(S_\ell)+p(S_\ell)} \left(\tau + \frac{1}{2} \right) \mathcal{M}(y)_j \geq \sum_{\ell=1}^{k} p(S_\ell) \left(r_{\min}(S_\ell) + \frac{1}{2} p(S_\ell) \right) = h(S).$$

The inequality follows from the constraints defining P_D^∞ and the interchange argument which we already used in the proof of Theorem 2.2. This shows $\mathcal{M}(y) \in P_R$ and thus $\mathcal{M}(P_D^\infty) \subseteq P_R$.

To show the reverse inclusion, we use the observation from the proof of part (i) that P_R can be represented as the sum of the convex hull of all mean busy time vectors of LP schedules and the nonnegative orthant. Since, by equation (6), the mean busy time vector M^{LP} of any LP schedule is the projection of the corresponding 0/1-vector y^{LP}, it remains to show that every unit vector e_j is a direction of recession for $\mathcal{M}(P_D^\infty)$. For this, fix
an LP schedule and let y^{LP} and $M^{LP} = \mathcal{M}(y^{LP})$ denote the associated 0/1 y-vector and mean busy time vector, respectively. For any job $j \in N$ and any real $\lambda > 0$, we need to show that $M^{LP} + \lambda e_j \in \mathcal{M}(P_D^\infty)$.

Let $\tau_{\text{max}} = \max\{ \tau : y_{k\tau}^{LP} = 1 : k \in N \}$. Choose θ such that $y_{j\theta}^{LP} = 1$, choose an integer $\mu > \max\{ \lambda p_j, \tau_{\text{max}} - \theta \}$ and define y' by $y'_{j\theta} = 0, y'_{j, \theta + \mu} = 1$, and $y'_{k\tau} = y_{k\tau}^{LP}$ otherwise. In the associated preemptive schedule, the processing of job j that was done in interval $[\theta, \theta + 1)$ is now postponed, by μ time units, until interval $[\theta + \mu, \theta + \mu + 1)$. Therefore, its mean busy time vector $M' = \mathcal{M}(y')$ satisfies $M'_{j} = M_{j}^{LP} + \mu/p_j$ and $M'_{k} = M_{k}^{LP}$ for all $k \neq j$. Let $\lambda' = \mu/p_j \geq \lambda$, so $M' = M^{LP} + \lambda' e_j$. Then the vector $M^{LP} + \lambda e_j$ is a convex combination of $M^{LP} = \mathcal{M}(y^{LP})$ and $M' = \mathcal{M}(y)$. Let y be the corresponding convex combination of y^{LP} and y'. Since P_D^∞ is convex then $y \in P_D^\infty$ and, since the mapping \mathcal{M} is linear, $M^{LP} + \lambda e_j = \mathcal{M}(y) \in \mathcal{M}(P_D^\infty)$. The proof is complete.

In view of earlier results for single machine scheduling with identical release dates [23], as well as for parallel machine scheduling with unit processing times and integer release dates [25], it is interesting to note that the feasible set P_R of the mean busy time relaxation is, up to scaling by the job processing times, a supermodular polyhedron:

Proposition 2.8. The set function h defined in (4) is supermodular.

Proof. Consider any two elements $j, k \in N$ and any subset $S \subseteq N \setminus \{ j, k \}$. We may construct an LP schedule minimizing $\sum_{i \in S \cup \{j, k\}} p_i M_i$ using the job-based method by considering first the jobs in S and then job k. By definition (4) the resulting mean busy times M^{LP} satisfy $\sum_{i \in S} p_i M_i^{LP} = h(S)$ and $\sum_{i \in S \cup \{j, k\}} p_i M_i^{LP} = h(S \cup \{j, k\})$. Note that job k is scheduled, no earlier than its release date, in the first p_k units of idle time left after the insertion of all jobs in S. Thus M_k^{LP} is the mean of all these p_k time units. Similarly, we may construct an LP schedule, whose mean busy time vector will be denoted by M^{LP}, minimizing $\sum_{i \in S \cup \{j, k\}} p_i M_i$ by considering first the jobs in S, so $M_i^{LP} = M_i^{LP}$ for all $i \in S$; then job j, so $\sum_{i \in S \cup \{j\}} p_i M_i^{LP} = h(S \cup \{j\})$; and then job k, so $\sum_{i \in S \cup \{j, k\}} p_i M_i^{LP} = h(S \cup \{j, k\})$. Since job j has been inserted after subset S was scheduled, job k cannot use any idle time interval that is earlier than those in the former LP schedule M^{LP}—and some of the previously available idle time may now be occupied by job j, causing a delay in the mean busy time of job k; thus we have $M_k^{LP} \geq M_k^{LP}$ and therefore

$$h(S \cup \{j, k\}) - h(S \cup \{j\}) = M_k^{LP} \geq M_k^{LP} = h(S \cup \{k\}) - h(S).$$

This suffices to establish that h is supermodular.

An alternate proof of the supermodularity of h can be derived, as in [9], from the fact, observed by Dyer and Wolsey and already mentioned above,
that relaxation \((D) \) becomes a transportation problem after elimination of the \(C_j \)'s. Indeed, from an interpretation of Nemhauser, Wolsey and Fisher [19] of a result of Shapley [31], it then follows that the value of this transportation problem as a function of \(S \) is supermodular. One of the consequences of Proposition 2.8 is that the job-based method to construct an LP schedule is just a manifestation of the greedy algorithm for minimizing \(\sum_{j \in N} w_jM_j \) over the supermodular polyhedron \(P_R \).

We finally note that the separation problem for the polyhedron \(P_R \) can be solved combinatorially. One can separate over \(\sum_{j \in S} p_j M_j \geq \alpha(S)(r_{\min}(S) + p(S)) \) by trying all, at most \(n \) possible values for \(r_{\min}(S) \) and then applying a \(O(n \log n) \) separation routine of Queyranne [23] for the problem without release dates. The overall separation routine can be implemented in \(O(n^2) \) time by observing that the bottleneck step in Queyranne’s algorithm — sorting the mean busy times of the jobs — needs to be done only once for the whole job set.

3 Provable Good Schedules and LP Relaxations

In this section, we derive approximation algorithms for \(1 | r_j | \sum w_jC_j \) that are based on converting the preemptive LP schedule into a feasible nonpreemptive schedule whose value can be bounded in terms of the optimum LP value \(Z_D = Z_R \). This yields results on the quality of both the computed schedule and the LP relaxations under consideration since the value of the computed schedule is an upper bound and the optimum LP value is a lower bound on the value of an optimal schedule.

In Section 3.6 below, we describe a family of instances for which the ratio between the optimum value of the \(1 | r_j | \sum w_jC_j \) problem and the lower bounds \(Z_R \) and \(Z_D \) is arbitrarily close to \(\frac{1}{\sqrt{e}} > 1.5819 \). This lower bound of \(\frac{1}{\sqrt{e}} \) sets a target for the design of approximation algorithms based on these LP relaxations.

In order to convert the preemptive LP schedule into a nonpreemptive schedule we make use of so-called \(\alpha \)-points of jobs. For \(0 < \alpha \leq 1 \) the \(\alpha \)-point \(t_j(\alpha) \) of job \(j \) is the first point in time when an \(\alpha \)-fraction of job \(j \) has been completed in the LP schedule, i.e., when \(j \) has been processed for \(\alpha \cdot p_j \) time units. In particular, \(t_j(1) \) is equal to the completion time and we define \(t_j(0^+) \) to be the start time of job \(j \). Notice that, by definition, the mean busy time \(M_j^{LP} \) of job \(j \) in the LP schedule is the average over all its \(\alpha \)-points

\[
M_j^{LP} = \int_0^1 t_j(\alpha) \, d\alpha .
\]

We will also use the following notation: For a fixed job \(j \) and \(0 < \alpha \leq 1 \) we denote the fraction of job \(k \) that is completed in the LP schedule by
time \(t_j(\alpha) \) by \(\eta_k(\alpha) \); in particular, \(\eta_j(\alpha) = \alpha \). The amount of idle time that occurs between time 0 and the start of job \(j \) in the LP schedule is denoted by \(\tau_{idle} \). Note that \(\eta_k \) and \(\tau_{idle} \) implicitly depend on the fixed job \(j \). By construction, there is no idle time between the start and completion of job \(j \) in the LP schedule; therefore we can express \(j \)'s \(\alpha \)-point as

\[
t_j(\alpha) = \tau_{idle} + \sum_{k \in N} \eta_k(\alpha) \cdot p_k .
\]

For a given \(0 < \alpha \leq 1 \), we define the \(\alpha \)-schedule as the schedule in which jobs are processed nonpreemptively as early as possible and in the order of nondecreasing \(\alpha \)-points. We denote the completion time of job \(j \) in this schedule by \(C_j^\alpha \). The idea of scheduling non-preemptively in the order of \(\alpha \)-points in a preemptive schedule was introduced by Phillips, Stein and Wein [20], and used in many of the subsequent results in the area.

This idea can be further extended to individual, i.e., job-dependent \(\alpha_j \)-points \(t_j(\alpha_j) \), for \(j \in N \) and \(0 < \alpha_j \leq 1 \). We denote the vector consisting of all \(\alpha_j \)'s by \(\mathbf{\alpha} := (\alpha_j) := (\alpha_1, \ldots, \alpha_n) \). Then, the \((\alpha_j) \)-schedule is constructed by processing the jobs as early as possible and in nondecreasing order of their \(\alpha_j \)-points; the completion time of job \(j \) in the \((\alpha_j) \)-schedule is denoted by \(C_j^{\alpha_j} \). Figure 2 compares an \(\alpha \)-schedule to an \((\alpha_j) \)-schedule.

In the sequel we present several results on the quality of \((\alpha_j) \)-schedules. These results also imply bounds on the quality of the LP relaxations of the previous section. The main result is the existence of a random \((\alpha_j) \)-schedule whose expected value is at most a factor 1.6853 of the optimum LP value \(Z_D \). Therefore the LP relaxations \((D) \) and \((R) \) deliver a lower bound which is at least 0.5933 \((\approx 1.6853^{-1}) \) times the optimum value. The corresponding randomized algorithm can be implemented on-line; it has competitive ratio 1.6853 and running time \(O(n \log n) \); it can also be derandomized to run off-line in \(O(n^2) \) time. We also investigate the case of a single common \(\alpha \) and show that the best \(\alpha \)-schedule is always within a factor of 1.7451 of the optimum.

3.1 Bounding the completion times in \((\alpha_j) \)-schedules

To analyze the completion times of jobs in \((\alpha_j) \)-schedules, we consider nonpreemptive schedules of similar structure that are, however, constructed by a slightly different conversion routine which we call \((\alpha_j) \)-CONVERSION:

Consider the jobs \(j \in N \) in order of nonincreasing \(\alpha_j \)-points \(t_j(\alpha_j) \) and iteratively change the preemptive LP schedule to a nonpreemptive schedule by applying the following steps:

i) remove the \(\alpha_j \cdot p_j \) units of job \(j \) that are processed before \(t_j(\alpha_j) \) from the machine and leave it idle within the corresponding time intervals; we say that this idle time is caused by job \(j \);
Figure 2: A nonpreemptive α-schedule (for $\alpha = 1/2$) and an (α_j)-schedule shown above and below the LP schedule, respectively. Notice that there is no common α value that would lead to the latter schedule.
ii) delay the whole processing that is done later than \(t_j(\alpha_j) \) by \(p_j \);

iii) remove the remaining \((1-\alpha_j) \)-fraction of job \(j \) from the machine and shrink the corresponding time intervals; shrinking a time interval means to discard the interval and move earlier, by the corresponding amount, any processing that occurs later;

iv) process job \(j \) in the released time interval \([t_j(\alpha_j), t_j(\alpha_j) + p_j]\).

Figure 3 contains an example illustrating the action of \((\alpha_j)\)-CONVERSION. Observe that in the resulting schedule jobs are processed in nondecreasing order of \(\alpha_j \)-points and no job \(j \) is started before time \(t_j(\alpha_j) \geq r_j \). The latter property will be useful in the analysis of on-line \((\alpha_j)\)-schedules.

Lemma 3.1. The completion time of job \(j \) in the schedule constructed by \((\alpha_j)\)-CONVERSION is equal to

\[
t_j(\alpha_j) + \sum_{k: \alpha_k \leq \eta_k(\alpha_j)} \left(1 + \alpha_k - \eta_k(\alpha_j)\right) \cdot p_k .
\]

Proof. Consider the schedule constructed by \((\alpha_j)\)-CONVERSION. The completion time of job \(j \) is equal to the idle time before its start plus the sum of processing times of jobs that start no later than \(j \). Since the jobs are processed in nondecreasing order of their \(\alpha_j \)-points, the amount of processing before the completion of job \(j \) is

\[
\sum_{k: \alpha_k \leq \eta_k(\alpha_j)} p_k .
\]

(9)

The idle time before the start of job \(j \) can be written as the sum of the idle time \(\tau_{idle} \) that already existed in the LP schedule before \(j \)'s start plus the idle time before the start of job \(j \) that is caused in steps (i) of \((\alpha_j)\)-CONVERSION. Each job \(k \) that is started no later than \(j \), i.e., such that \(\eta_k(\alpha_j) \geq \alpha_k \), contributes \(\alpha_k \cdot p_k \) units of idle time, all other jobs \(k \) only contribute \(\eta_k(\alpha_j) \cdot p_k \) units of idle time. As a result, the total idle time before the start of job \(j \) can be written as

\[
\tau_{idle} + \sum_{k: \alpha_k \leq \eta_k(\alpha_j)} \alpha_k \cdot p_k + \sum_{k: \alpha_k > \eta_k(\alpha_j)} \eta_k(\alpha_j) \cdot p_k .
\]

(10)

The completion time of job \(j \) in the schedule constructed by \((\alpha_j)\)-CONVERSION is equal to the sum of the expressions in (9) and (10); the result then follows from equation (8). \(\square \)

Since the schedule constructed by \((\alpha_j)\)-CONVERSION processes the jobs in order of nondecreasing \(\alpha_j \)-points, we obtain the following corollary.
Figure 3: Illustration of the individual iterations of \((\alpha_j)\)-CONVERSION.
Corollary 3.2. The completion time of job j in an (α_j)-schedule can be bounded by

$$C^\alpha_j \leq t_j(\alpha_j) + \sum_{k: \alpha_k \leq \eta_k(\alpha_j)} (1 + \alpha_k - \eta_k(\alpha_j)) \cdot p_k.$$

3.2 Bounds for α-schedules and (α_j)-schedules

We start with a result on the quality of the α-schedule for a fixed value of α.

Theorem 3.3. For fixed α, (i) the value of the α-schedule is within a factor

$$\max\{1 + \frac{1}{\alpha}, 1 + 2\alpha\}$$

of the optimum LP value; in particular, for $\alpha = 1/\sqrt{2}$ the bound is $1 + \sqrt{2}$. Simultaneously, (ii) the length of the α-schedule is within a factor of $1 + \alpha$ of the optimum makespan.

The proof of (i) can be found in [10]; the proof of (ii) follows from Corollary 3.2. In the sequel we will compare the completion time C^α_j of every job j with its “completion time” $M^{LP}_j + \frac{1}{2}p_j$ in the LP schedule. However, for any fixed value of α, there exist instances which show that this type of job-by-job analysis can give a bound no better than $1 + \sqrt{2} > 2.4142$. One can even show that, for any given value of α, there exist instances for which the objective value of the α-schedule can be as bad as twice the LP lower bound.

In view of these results, it is advantageous to use several values of α as it appears that no instance can be simultaneously bad for all choices of α. In fact, the α-points develop their full power in combination with randomization, i.e., when α or even job-dependent α_j are chosen randomly from $(0,1]$ according to an appropriate density function. This is also motivated by equation (7) which relates the expected α-point of a job under a uniform distribution of α to the LP variable M^{LP}_j. For random values α_j, we analyze the expected value of the resulting (α_j)-schedule and compare it to the optimum LP value. Notice that a bound on the expected value proves the existence of a vector $(\tilde{\alpha}_j)$ such that the corresponding $(\tilde{\alpha}_j)$-schedule meets this bound. Moreover, for our results we can always compute such an $(\tilde{\alpha}_j)$ in polynomial time by derandomizing our algorithms with standard methods, see Propositions 3.7 and 3.12.

Although the currently best known bounds can only be achieved for (α_j)-schedules with job-dependent α_j, we investigate α-schedules with a single α as well. On the one hand, this helps to better understand the potential advantages of (α_j)-schedules; on the other hand, the randomized algorithm that relies on a single α admits a natural derandomization. In fact, we can easily compute an α-schedule of least objective value over all α between 0 and 1; we refer to this schedule as the best-α-schedule. In the Proposition 3.7 below, we will show that there are at most n different α-schedules.
The best-α-schedule can be constructed in $O(n^2)$ time by evaluating all these different schedules.

As a warm-up exercise for the kind of analysis we use, we start by proving a bound of 2 on the expected worst-case performance ratio of uniformly generated (α_j)-schedules in the following theorem. This result will then be improved by using more intricate probability distributions and by taking advantage of additional insights into the structure of the LP schedule.

Theorem 3.4. Let the random variables α_j be pairwise independently and uniformly drawn from $(0,1]$. Then, the expected value of the resulting (α_j)-schedule is within a factor 2 of the optimum LP value Z_D. The same result holds for the α-schedule if α is drawn uniformly at random from $(0,1]$.

We only give the proof for the case of job-dependent α_j since it is somewhat simpler. The proof of the result for the α-schedule follows from a more general analysis in Subsection 3.3.

Proof. Remember that the optimum LP value is given by $\sum_j w_j (M_j^{LP} + \frac{1}{2} p_j)$. To get the claimed result, we prove that $E_U [C_j^{\alpha}] \leq 2 (M_j^{LP} + \frac{1}{2} p_j)$ for all jobs $j \in N$, where $E_U [F(\alpha)]$ denotes the expectation of a function F of the random variable α when the latter is uniformly distributed. The overall performance follows from this job-by-job bound by linearity of expectations.

Consider an arbitrary, but fixed job $j \in N$. To analyze the expected completion time of j, we first keep α_j fixed, and consider the conditional expectation $E_U [C_j^{\alpha} | \alpha_j]$. Since the random variables α_j and α_k are independent for each $k \neq j$, Corollary 3.2 and equation (8) yield

$$E_U [C_j^{\alpha} | \alpha_j] \leq t_j(\alpha_j) + \sum_{k \neq j} p_k \int_0^{\eta_k(\alpha_j)} (1 + \alpha_k - \eta_k(\alpha_j)) \, d\alpha_k + p_j$$

$$= t_j(\alpha_j) + \sum_{k \neq j} \left(\eta_k(\alpha_j) - \frac{\eta_k(\alpha_j)^2}{2} \right) \cdot p_k + p_j$$

$$\leq t_j(\alpha_j) + \sum_{k \neq j} \eta_k(\alpha_j) \cdot p_k + p_j \leq 2 \cdot \left(t_j(\alpha_j) + \frac{1}{2} p_j \right).$$

To obtain the unconditional expectation $E_U [C_j^{\alpha}]$, we integrate over all possible choices of α_j:

$$E_U [C_j^{\alpha}] = \int_0^1 E_U [C_j^{\alpha} | \alpha_j] \, d\alpha_j \leq 2 \cdot \left(\int_0^1 t_j(\alpha_j) \, d\alpha_j + \frac{1}{2} p_j \right)$$

$$= 2 \cdot \left(M_j^{LP} + \frac{1}{2} p_j \right);$$

the last equation follows from (7).
We turn now to deriving improved results. We start with an analysis of the structure of the LP schedule. Consider any job \(j \), and assume that, in the LP schedule, \(j \) is preempted at time \(s \) and its processing resumes at time \(t > s \). Then all the jobs which are processed between \(s \) and \(t \) have a smaller index; as a result, these jobs will be completely processed between times \(s \) and \(t \). Thus, in the LP schedule, between the start time and the completion time of any job \(j \), the machine is constantly busy, alternating between the processing of portions of \(j \) and the complete processing of groups of jobs with smaller index. Conversely, any job preempted at the start time \(t_j(0^+) \) of job \(j \) will have to wait at least until job \(j \) is complete before its processing can be resumed.

We capture this structure by partitioning, for a fixed job \(j \), the set of jobs \(N \setminus \{ j \} \) into two subsets \(N_1 \) and \(N_2 \): Let \(N_2 \) denote the set of all jobs that are processed between the start and completion of job \(j \). All remaining jobs are put into subset \(N_1 \). Notice that the function \(\eta_k \) is constant for jobs \(k \in N_1 \); to simplify notation we write \(\eta_k := \eta_k(\alpha_j) \) for those jobs. For \(k \in N_2 \), let \(0 < \mu_k < 1 \) denote the fraction of job \(j \) that is processed before the start of job \(k \); the function \(\eta_k \) is then given by

\[
\eta_k(\alpha_j) = \begin{cases}
0 & \text{if } \alpha_j \leq \mu_k, \\
1 & \text{if } \alpha_j > \mu_k,
\end{cases} \quad \text{for } k \in N_2.
\]

We can now rewrite equation (8) as

\[
t_j(\alpha_j) = \tau_{\text{die}} + \sum_{k \in N_1} \eta_k \cdot p_k + \sum_{k \in N_2, \alpha_j > \mu_k} p_k + \alpha_j \cdot p_j
\]

\[
= t_j(0^+) + \sum_{k \in N_2 : \alpha_j > \mu_k} p_k + \alpha_j \cdot p_j . \tag{11}
\]

Plugging (11) into equation (7) yields

\[
M_j^{LP} = t_j(0^+) + \sum_{k \in N_2} (1 - \mu_k) \cdot p_k + \frac{1}{2} p_j , \tag{12}
\]

and Corollary 3.2 can be rewritten as

\[
G_j^a \leq t_j(0^+) + \sum_{k \in N_1 : \alpha_k \leq \eta_k} (1 + \alpha_k - \eta_k) \cdot p_k
\]

\[
+ \sum_{k \in N_2 : \alpha_j > \mu_k} (1 + \alpha_k) \cdot p_k + (1 + \alpha_j) \cdot p_j , \tag{13}
\]

where, for \(k \in N_2 \), we have used the fact that \(\alpha_k \leq \eta_k(\alpha_j) \) is equivalent to \(\alpha_j > \mu_k \). The expressions (11), (12), and (13) reflect the structural insights that we need for proving stronger bounds for \((\alpha_j)-\)schedules and \(\alpha\)-schedules in the sequel.
As mentioned above, the second ingredient for an improvement on the bound of 2 is a more sophisticated probability distribution of the random variables α_j and α, respectively. In view of the bound on C_j^α given in (13), we have to cope with two contrary phenomena: On the one hand, small values of α_k keep the terms of the form $(1 + \alpha_k - \eta_k)$ and $(1 + \alpha_k)$ on the right-hand side of (13) small; on the other hand, choosing larger values decreases the number of terms in the first sum on the right-hand side of (13). The balancing of these two effects contributes to reducing the bound on the expected value of C_j^α.

3.3 Improved bounds for α-schedules

In this subsection we prove the following theorem.

Theorem 3.5. Let $\gamma \approx 0.4675$ be the unique solution to the equation

$$1 - \frac{\gamma^2}{1+\gamma} = \gamma + \ln(1 + \gamma)$$

satisfying $0 < \gamma < 1$. Define $c := \frac{1+\gamma}{1+\gamma-\gamma} < 1.7451$ and $\delta := \ln(\frac{c}{c-1}) \approx 0.8511$. If α is chosen according to the density function

$$f(\alpha) = \begin{cases} (c-1) \cdot e^\alpha & \text{if } \alpha \leq \delta, \\ 0 & \text{otherwise,} \end{cases}$$

then the expected value of the resulting random α-schedule is bounded by c times the optimum LP value Z_D.

Before we prove Theorem 3.5 we state two properties of the density function f that are crucial for the analysis of the corresponding random α-schedule. Since the proof of the following lemma is purely technical, we omit it.

Lemma 3.6. The function f given in Theorem 3.5 is a density function with the following properties:

(i) $\int_0^\eta f(\alpha) \cdot (1 + \alpha - \eta) \, d\alpha \leq (c-1) \cdot \eta$ for all $\eta \in [0, 1]$,

(ii) $\int_0^1 f(\alpha) \cdot (1 + \alpha) \, d\alpha \leq c \cdot (1 - \mu)$ for all $\mu \in [0, 1]$.

Property (i) is used to bound the delay to job j caused by jobs in N_1 which corresponds to the first summation on the right-hand side of (13). The second summation reflects the delay to job j caused by jobs in N_2 and will be bounded by property (ii). Observe that both (i) for $\eta = 1$ and (ii) for $\mu = 0$ yield $E_f[\alpha] \leq c-1$. In fact, we have that $E_f[\alpha] = (c-1)(1-e^\delta+\delta e^\delta) < 0.4852$ where $E_f[\alpha]$ denotes the expected value of a random variable α that is distributed according to the density f given in Theorem 3.5.
Proof of Theorem 3.5. Using inequality (13) and Lemma 3.6 we derive that
\[
\mathbb{E}_f [C_j^a] \leq t_j(0^+) + (c - 1) \sum_{k \in N_1} \eta_k \cdot p_k + c \sum_{k \in N_2} (1 - \mu_k) \cdot p_k + c \cdot p_j \\
\leq c \cdot t_j(0^+) + c \sum_{k \in N_2} (1 - \mu_k) \cdot p_k + c \cdot p_j = c \cdot \left(M_j^{LP} + \frac{1}{2} p_j \right);
\]
the last inequality follows from the definition of \(N_1 \) and \(\eta_k \) and the last equality follows from (12).

Notice that any density function satisfying properties (i) and (ii) of Lemma 3.6 for some value \(c' \) directly leads to the job-by-job bound \(\mathbb{E}_f [C_j^a] \leq c' \left(M_j^{LP} + \frac{1}{2} p_j \right) \) for the corresponding random \(\alpha \)-schedule. It is easy to see that the unit function satisfies Lemma 3.6 with \(c' = 2 \) and establishes the last statement in Theorem 3.4.

The use of an exponential density function is motivated by the first property in Lemma 3.6; notice that the function \(\alpha \mapsto (c - 1) \cdot e^\alpha \) verifies it with equality. On the other hand, the exponential function is truncated in order to reduce the term \(\int_{\mu}^1 f(\alpha) \cdot (1 + \alpha) \, d\alpha \) in the second property. In fact, the truncated exponential function \(f \) in Theorem 3.5 can be shown to minimize \(c' \); it is therefore optimal for our analysis. In addition, there exists a class of instances for which the ratio of the expected cost of an \(\alpha \)-schedule determined using this density function, to the cost of the optimum LP value is arbitrarily close to 1.745; this shows that the preceding analysis is essentially tight in conjunction with truncated exponential functions.

As a corollary to Theorem 3.5 we derive that the best-\(\alpha \)-schedule has a value of at most \(1.7451 \cdot Z_R \). The following proposition shows that the randomized algorithm that yields the \(\alpha \)-schedule can be easily derandomized because the sample space is small.

Proposition 3.7. There are at most \(n \) different \(\alpha \)-schedules; they can be computed in \(O(n^2) \) time.

Proof. As \(\alpha \) goes from 0 to 1, the \(\alpha \)-schedule changes only whenever an \(\alpha \)-point, say for job \(j \), reaches a time at which job \(j \) is preempted. Thus, the total number of changes in the \(\alpha \)-schedule is bounded above by the total number of preemptions. Since a preemption can occur in the LP schedule only whenever a job is released, the total number of preemptions is at most \(n - 1 \), and the number of \(\alpha \)-schedules is at most \(n \). Since each of these \(\alpha \)-schedules can be computed in \(O(n) \) time, the result on the running time follows. \(\Box \)

3.4 Improved bounds for \((\alpha_j) \)-schedules

In this subsection, we prove the following theorem.
Theorem 3.8. Let the α_j’s be chosen pairwise independently from a probability distribution over $(0,1]$ with the density function
\[
g(\alpha) = \begin{cases}
(c - 1) \cdot e^\alpha & \text{if } \alpha \leq \gamma + \ln(2 - \gamma), \\
0 & \text{otherwise},
\end{cases}
\]
where $\gamma \approx 0.4835$ is a solution to the equation
\[e^{-\gamma} + 2\gamma + \ln(2 - \gamma) = 2 \]
and $c = 1 + 1/((2 - \gamma) \cdot e^\gamma - 1) < 1.6853$. Then, the expected value of the resulting random (α_j)-schedule is bounded by c times the optimum LP value Z_D.

The bound in Theorem 3.8 yields also a bound on the quality of the LP relaxations:

Corollary 3.9. The LP relaxations (D) and (R) deliver in $O(n \log n)$ time a lower bound which is at least 0.5933 ($\approx 1.6853^{-1}$) times the optimum value.

Following the lines of the last subsection, we state two properties of the density function g that are crucial for the analysis of the corresponding random (α_j)-schedule. The proof of the following lemma is again purely technical and is therefore omitted.

Lemma 3.10. The function g given in Theorem 3.8 is a density function with the following properties:

(i) $\int_0^\eta g(\alpha) \cdot (1 + \alpha - \eta) \, d\alpha \leq (c - 1) \cdot \eta$ for all $\eta \in [0,1],$

(ii) $(1 + E_g[\alpha]) \int_\mu^1 g(\alpha) \, d\alpha \leq c \cdot (1 - \mu)$ for all $\mu \in [0,1],$

where $E_g[\alpha]$ denotes the expected value of a random variable α that is distributed according to g.

Notice the similarity of Lemma 3.10 and Lemma 3.6 of the last subsection. Again, properties (i) and (ii) are used to bound the delay to job j caused by jobs in N_1 and N_2, respectively, in the right-hand side of inequality (13). Property (i) for $\eta = 1$ or Property (ii) for $\mu = 0$ again yield $E_g[\alpha] \leq c - 1$.

Proof of Theorem 3.8. Our analysis of the expected completion time of job j in the random (α_j)-schedule follows the line developed in the proof of Theorem 3.4. First we consider a fixed choice of α_j and try to bound the corresponding conditional expectation $E_g[C_j^\alpha | \alpha_j]$. In a second step
we bound the unconditional expectation $E_g[C_j^\alpha]$ by integrating the product $g(\alpha_j) \cdot E_g[C_j^\alpha | \alpha_j]$ over the interval $(0, 1)$.

For a fixed job j and a fixed value α_j, the bound in (13) and property (i) from Lemma 3.10 yield

$$E_g[C_j^\alpha | \alpha_j] \leq t_j(0^+) + (c - 1) \sum_{\eta_k \in N_1} \eta_k \cdot p_k + \sum_{k \in N_2 : \alpha_j > \mu_k} (1 + E_g[\alpha_k]) p_k + (1 + \alpha_j) \cdot p_j$$

$$\leq c \cdot t_j(0^+) + (1 + E_g[\alpha_1]) \sum_{k \in N_2 : \alpha_j > \mu_k} p_k + (1 + \alpha_j) \cdot p_j.$$

The last inequality follows from (11) and $E_g[\alpha_k] = E_g[\alpha_1]$ for all $k \in N$. Using property (ii) and equation (12) yields

$$E_g[C_j^\alpha] \leq c \cdot t_j(0^+) + (1 + E_g[\alpha_1]) \sum_{k \in N_2} p_k \int_{\mu_k}^{1} g(\alpha_j) \, d\alpha_j + (1 + E_g[\alpha_j]) \cdot p_j$$

$$\leq c \cdot t_j(0^+) + c \sum_{k \in N_2} (1 - \mu_k) \cdot p_k + c \cdot p_j = c \cdot \left(M_j^{LP} + \frac{1}{2} p_j\right).$$

The result follows from linearity of expectations. \hfill \Box

While the total number of possible orderings of jobs is $n! = 2^{O(n \log n)}$, we show in the following lemma that the maximum number of (α_j)-schedules is at most 2^{n-1}. We will use the following observation. Let q_j denote the number of different pieces of job j in the LP schedule; thus q_j represents the number of times job j is preempted plus 1. Since there are at most $n - 1$ preemptions, we have that $\sum_{j=1}^{n} q_j \leq 2n - 1$.

Lemma 3.11. The maximum number of (α_j)-schedules is at most 2^{n-1} and this bound can be attained.

Proof. The number of (α_j)-schedules is given by $s = \prod_{j=1}^{n} q_j$. Note that $q_1 = 1$ since this job is not preempted in the LP schedule. Thus, $s = \prod_{j=2}^{n} q_j$, while $\sum_{j=2}^{n} q_j \leq 2(n - 1)$. By the arithmetic-geometric mean inequality, we have that

$$s = \prod_{j=2}^{n} q_j \leq \left(\frac{\sum_{j=2}^{n} q_j}{n - 1}\right)^{n-1} \leq 2^{n-1}.$$

Furthermore, this bound is attained if $q_j = 2$ for $j = 2, \ldots, n$ and this is achieved for example for the instance with $p_j = 2$ and $r_j = n - j$ for all j. \hfill \Box

Therefore, and in contrast to the case of random α-schedules, we cannot afford to derandomize our randomized 1.6853-approximation algorithm by
enumerating all \((\alpha_j)\)-schedules. We instead use the method of conditional probabilities [17].

From inequality (13) we obtain for every vector \(\alpha = (\alpha_j)\) an upper bound on the objective value of the corresponding \((\alpha_j)\)-schedule, \(\sum_j w_j C_j^\alpha \leq UB(\alpha)\), where \(UB(\alpha) = \sum_j w_j RHS_j(\alpha)\) and \(RHS_j(\alpha)\) denotes the right-hand side of inequality (13). Taking expectations and using Theorem 3.8, we have already shown that

\[
E_g \left[\sum_{j \in N} w_j C_j^\alpha \right] \leq E_g[UB(\alpha)] \leq c Z_D
\]

where \(c < 1.6853\). For each job \(j \in N\) let \(Q_j = \{Q_{j1}, \ldots, Q_{j\ell_j}\}\) denote the set of the intervals for \(\alpha_j\) corresponding to the \(q_j\) pieces of job \(j\) in the LP schedule. We consider the jobs one by one in arbitrary order, say, \(j = 1, \ldots, n\). Assume that, at step \(j\) of the derandomized algorithm, we have identified intervals \(Q_i^d \in Q_1, \ldots, Q_{j-1}^d \in Q_{j-1}\) such that

\[
E_g[UB(\alpha) | \alpha_i \in Q_i^d \text{ for } i = 1, \ldots, j - 1] \leq c Z_D .
\]

Using conditional expectations, the left-hand side of this inequality is

\[
E_g[UB(\alpha) | \alpha_i \in Q_i^d \text{ for } i = 1, \ldots, j - 1] = \sum_{\ell=1}^{\ell_j} \text{Prob}\{\alpha_j \in Q_{j\ell}\} \cdot E_g \left[UB(\alpha) | \alpha_i \in Q_i^d \text{ for } i = 1, \ldots, j - 1 \text{ and } \alpha_j \in Q_{j\ell} \right] .
\]

Since \(\sum_{\ell=1}^{\ell_j} \text{Prob}\{\alpha_j \in Q_{j\ell}\} = 1\), there exists at least one interval \(Q_{j\ell} \in Q_j\) such that

\[
E_g[UB(\alpha) | \alpha_i \in Q_i^d \text{ for } i = 1, \ldots, j - 1 \text{ and } \alpha_j \in Q_{j\ell}] \leq E_g[UB(\alpha) | \alpha_i \in Q_i^d \text{ for } i = 1, \ldots, j - 1] .
\] (14)

Therefore, it suffices to identify such an interval \(Q_j^d = Q_{j\ell}\) satisfying (14) and we may conclude that

\[
E_g \left[\sum_{k \in N} w_k C_k^\alpha \mid \alpha_i \in Q_i^d \text{ for } i = 1, \ldots, j \right] \leq E_g[UB(\alpha) | \alpha_i \in Q_i^d \text{ for } i = 1, \ldots, j] \leq c Z_D .
\]

Having determined in this way an interval \(Q_j^d\) for every job \(j = 1, \ldots, n\), we then note that the \((\alpha_j)\)-schedule is the same for all \(\alpha \in Q_1^d \times Q_2^d \times \cdots \times Q_n^d\). The (now deterministic) objective value of this \((\alpha_j)\)-schedule is

\[
\sum_{j \in N} w_j C_j^\alpha \leq E_g[UB(\alpha) | \alpha_i \in Q_i^d \text{ for } i = 1, \ldots, n] \leq E_g[UB(\alpha)] \leq c Z_D < 1.6853 Z_D ,
\]
as desired. For every \(j = 1, \ldots, n \), checking whether an interval \(Q_j \) satisfies inequality (14) amounts to evaluating \(O(n) \) terms, each of which may be computed in constant time. Since, as observed just before Lemma 3.11, we have a total of \(\sum_{j=1}^{n} q_j \leq 2n - 1 \) candidate intervals, it follows that the derandomized algorithm runs in \(O(n^2) \) time.

Proposition 3.12. The randomized 1.6853-approximation algorithm can be derandomized; the resulting deterministic algorithm runs in \(O(n^2) \) time and has performance guarantee 1.6853 as well.

3.5 Constructing provably good schedules on-line

In this subsection we show that our randomized approximation results also apply in an on-line setting. There are several different on-line paradigms that have been studied in the area of scheduling; we refer to [30] for a survey. We consider the setting where jobs continually arrive over time and, for each time \(t \), we must construct the schedule until time \(t \) without any knowledge of the jobs that will arrive afterwards. In particular, the characteristics of a job, i.e., its processing time and its weight become only known at its release date.

It has already been shown in Section 2 that the LP schedule can be constructed on-line. Unfortunately, for a given vector \((\alpha_j)\), the corresponding \((\alpha_j)\)-schedule cannot be constructed on-line. We only learn about the position of a job \(k \) in the sequence defined by nondecreasing \(\alpha_j \)-points at time \(t_k(\alpha_k) \); therefore we cannot start job \(k \) at an earlier point in time in the on-line setting. On the other hand, however, the start time of \(k \) in the \((\alpha_j)\)-schedule can be earlier than its \(\alpha_k \)-point \(t_k(\alpha_k) \).

Although an \((\alpha_j)\)-schedule cannot be constructed on-line, the above discussion reveals that the following variant, which we call *on-line-*(\(\alpha_j)\)-schedule, can be constructed on-line: For a given vector \((\alpha_j)\), process the jobs as early as possible in the order of their \(\alpha_j \)-points, with the additional constraint that no job \(k \) may start before time \(t_k(\alpha_k) \). See Figure 4 for an example. We note that this idea of delaying the start of jobs until sufficient information for a good decision is available was in this setting introduced by Phillips, Stein and Wein [20].

Notice that the nonpreemptive schedule constructed by \((\alpha_j)\)-CONVERSION fulfills these constraints; its value is therefore an upper bound on the value of the on-line-\((\alpha_j)\)-schedule. Our analysis in the last subsections relies on the bound given in Corollary 3.2 which also holds for the schedule constructed by \((\alpha_j)\)-CONVERSION by Lemma 3.1. This yields the following results.

Theorem 3.13. For any instance of the scheduling problem \(1 \mid r_j \mid \sum w_j C_j \),

a) choosing \(\alpha = 1/\sqrt{2} \) and constructing the on-line-\(\alpha\)-schedule yields a deterministic on-line algorithm with competitive ratio \(1 + \sqrt{2} \leq 2.4143 \) and running time \(O(n \log n) \);
b) choosing the α_j’s randomly and pairwise independently from $(0, 1]$ according to the density function g of Theorem 3.8 and constructing the on-line-(α_j)-schedule yields a randomized on-line algorithm with competitive ratio 1.6853 and running time $O(n \log n)$.

The competitive ratio 1.6853 in Theorem 3.13 beats the deterministic on-line lower bound 2 for the unit-weight problem $1\| r_j \sum C_j$ [14, 36]. For the same problem, Stougie and Vestjens proved the lower bound $\frac{e}{e-1} > 1.5819$ for randomized on-line algorithms [37, 39].

3.6 Bad instances for the LP relaxations

In this subsection, we describe a family of instances for which the ratio between the optimum value of the $1\| r_j \sum w_j C_j$ problem and the lower bounds Z_R and Z_D is arbitrarily close to $\frac{e}{e-1} > 1.5819$.

These instances I_n have $n \geq 2$ jobs as follows: one large job, denoted job n, and $n - 1$ small jobs denoted $j = 1, \ldots, n - 1$. The large job has processing time $p_n = n$, weight $w_n = \frac{1}{n}$, and release date $r_n = 0$. Each of the $n - 1$ small jobs j has zero processing time, weight $w_j = \frac{1}{n(n-1)(1+\frac{1}{n-1})^{n-j}}$, and release date $r_j = j$.

Throughout the paper, we have assumed that processing times are non-zero. In order to satisfy this assumption, we could impose a processing time of $1/k$ for all small jobs, multiply all processing times and release dates by k to make the data integral, and then let k tend to infinity. For simplicity, however, we just let the processing time of all small jobs be 0.
The LP solution has job n start at time 0, preempted by each of the small jobs; hence its mean busy times are: $M_j^{LP} = r_j$ for $j = 1, \ldots, n - 1$ and $M_{n}^{LP} = \frac{1}{2}$. Its objective value is $Z_R = (1 + \frac{1}{n-1})^n - (1 + \frac{1}{n-1})$. Notice that the completion time of each job j is in fact equal to $M_j^{LP} + \frac{1}{2}p_j$ such that the actual value of the preemptive schedule is equal to Z_R.

Now consider an optimum nonpreemptive schedule C^* and let $k = [C^*_n] - n \geq 0$, so k is the number of small jobs that can be processed before job n. It is optimal to process all these small jobs $1, \ldots, k$ at their release dates, and then to start processing job n at time $r_k = k$ just after job k. It is then optimal to process all remaining jobs $k+1, \ldots, n-1$ at time $k+n$ just after job n. Let C^k denote the resulting schedule, that is, $C^k_j = j$ for all $j \leq k$, and $C^k_j = k+n$ otherwise. Its objective value is $(1 + \frac{1}{n-1})^n - \frac{k}{n-1} - \frac{1}{n-1} - \frac{k}{n(n-1)}$. Therefore the optimum schedule is C^{n-1} with objective value $(1 + \frac{1}{n-1})^n - \frac{1}{n-1} - \frac{1}{n-1}$. As n grows large, the LP objective value approaches $e - 1$ while the optimum nonpreemptive cost approaches e.

4 Conclusion

Even though polynomial approximation schemes [1] have now been discovered for $1|r_j|\sum w_j C_j$, the algorithms we have developed, or variants of them, are likely to be superior in practice. The experimental studies of Savelsbergh et al. [26] and Uma and Wein [38] indicate that LP-based relaxations and scheduling in order of a_j-points are powerful tools for a variety of scheduling problems.

Several intriguing questions remain open. Regarding the quality of linear programming relaxations, it would be interesting to close the gap between the upper (1.6853) and lower (1.5819) bound on the quality of the relaxations considered in this paper. We should point out that the situation for the strongly NP-hard [15] $1|r_j, pmtn|\sum w_j C_j$ is similar. It is shown in [29] that the completion time relaxation is in the worst case at least a factor of $8/7$ and at most a factor of $4/3$ off the optimum; the latter bound is achieved by scheduling preemptively by LP-based random a_j-points. Chekuri et al. [5] prove that the optimum nonpreemptive value is at most $e/(e-1)$ times the optimum preemptive value; our example in Section 3.6 shows that this bound is tight.

Dyer and Wolsey [7] propose also a (non-preemptive) time-indexed relaxation which is stronger than the preemptive version studied here. This relaxation involves variables for each job and each time representing whether this job is being completed (rather than simply processed) at that time. This relaxation is at least as strong as the preemptive version, but its worst-case ratio is not known to be strictly better.

For on-line algorithms, both in the deterministic and randomized settings, there is also a gap between the known upper and lower bound on the
competitive ratios that are given at the end of Section 3.5.

References

time in the presence of release dates”, Mathematical Programming,

[22] M. Queyranne (1987), “Polyhedral Approaches to Scheduling Prob-

[23] M. Queyranne, “Structure of a simple scheduling polyhedron”, Mathe-

scheduling problems”, Preprint 408/1994, Department of Mathematics,

[25] M. Queyranne and A.S. Schulz, “Scheduling unit jobs with compta-
ible release dates on parallel machines with nonstationary speeds”, in
E. Balas and J. Clausen (eds.), Integer Programming and Combinatorial
Optimization (Proceedings of the 4th International IPCO Conference),

of LP-based approximation algorithms for scheduling problems”, Pro-
ceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms, San

proximations and LP lower bounds”, in J. Rolim (ed.), Randomization
and Approximation Techniques in Computer Science, Lecture Notes in

[28] A. S. Schulz and M. Skutella, “Scheduling–LPs bear probabilities: Ran-
domized approximations for min–sum criteria”, in R. Burkard and
G. J. Woeginger (eds.), Algorithms – ESA ’97, Lecture Notes in Com-

[29] A.S. Schulz and M. Skutella, “The power of α-points in preemptive
single machine scheduling”, Preprint 639/1999, Department of Math-
ematics, Technical University of Berlin, 1999.

ing (eds.), Online Algorithms: The State of the Art, Lecture Notes in

