"Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice"

Lemaire, Katleen ; Ravier, Magali A. ; Schraenen, Anica ; Creemers, John W. M. ; Van de Plas, Raf ; Granvik, Mikaela ; Van Lommel, Leentje ; Waelkens, Etienne ; Chimienti, Fabrice ; Rutter, Guy A. ; Gilon, Patrick ; in't Veld, Peter A. ; Schuit, Frans C.

Abstract
Zinc co-crystallizes with insulin in dense core secretory granules, but its role in insulin biosynthesis, storage and secretion is unknown. In this study we assessed the role of the zinc transporter ZnT8 using ZnT8-knockout (ZnT8(-/-)) mice. Absence of ZnT8 expression caused loss of zinc release upon stimulation of exocytosis, but normal rates of insulin biosynthesis, normal insulin content and preserved glucose-induced insulin release. Ultrastructurally, mature dense core insulin granules were rare in ZnT8(-/-) beta cells and were replaced by immature, pale insulin "progranules," which were larger than in ZnT8(+/-) islets. When mice were fed a control diet, glucose tolerance and insulin sensitivity were normal. However, after high-fat diet feeding, the ZnT8(-/-) mice became glucose intolerant or diabetic, and islets became less responsive to glucose. Our data show that the ZnT8 transporter is essential for the formation of insulin crystals in beta cells, contributing to the packagi...

Document type : Article de périodique (Journal article)

Référence bibliographique

DOI : 10.1073/pnas.0906587106
Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice

K. Lemaire^a, M. A. Ravier^b, A. Schraen^c, J. W. M. Creemers^d, R. Van de Plas^e, M. Granvik^f, L. Van Lommel^g, E. Waelkens^h, F. Chimientiⁱ, G. A. Rutter^j, P. Gilon^k, P. A. in’t Veld^l, and F. C. Schuit^m,ⁿ²

^aGene Expression Unit, Department Molecular Cell Biology, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium; ^bUnit of Endocrinology and Metabolism, University of Louvain, Faculty of Medicine, Université Catholique de Louvain 55,30, 1200 Brussels, Belgium; ^cInstitut National de la Santé et de la Recherche Médicale, U661, Equipe avenir, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Université Montpellier (IFR3), Institut de Génomique Fonctionnelle, 34090 Montpellier, France; ^dDepartment of Human Genetics, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium; ^eDepartment of Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium; ^fPrometa, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium; ^gMellitech, SAS, Commissariat à l’Energie Atomique, 17 rue des Martyrs, 38054 Grenoble, France; ^hDepartment of Cell Biology Division of Medicine Sir Alexander Fleming Building Imperial College, London Exhibition Road, London SW7 2AZ, United Kingdom; and ⁱDepartment of Pathology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium

Edited by Donald F. Steiner, University of Chicago, Chicago, IL and approved July 16, 2009 (received for review June 15, 2009)

Zinc co-crystallizes with insulin in dense core secretory granules, but its role in insulin biosynthesis, storage and secretion is unknown. In this study we assessed the role of the zinc transporter ZnT8 using ZnT8-knockout (ZnT8^{−/−}) mice. Absence of ZnT8 expression caused loss of zinc release upon stimulation of exocytosis, but normal rates of insulin biosynthesis, normal insulin content and preserved glucose-induced insulin release. Ultrastructurally, mature dense core insulin granules were rare in ZnT8^{−/−} beta cells and were replaced by immature, pale insulin “progranules,” which were larger than in ZnT8^{+/+} islets. When mice were fed a control diet, glucose tolerance and insulin sensitivity were normal. However, after high-fat diet feeding, the ZnT8^{−/−} mice became glucose intolerant or diabetic, and islets became less responsive to glucose. Our data show that the ZnT8 transporter is essential for the formation of insulin crystals in beta cells, contributing to the packaging efficiency of stored insulin. Interaction between the ZnT8^{−/−} genotype and diet to induce diabetes is a model for further studies of the mechanism of disease of human ZNT8 gene mutations.

dense core granule | diabetes | zinc

Zinc plays a crucial role in many cell functions; as a result, both zinc deficiency (1) and excess of free zinc (2) are toxic to mammalian cells. The abundance of zinc per cell is tissue-dependent and the zinc content of pancreatic beta cells is among the highest in the body. In beta cells, zinc was proposed to be required for multiple steps in insulin synthesis and release (3–5), but conclusive evidence is lacking. After synthesis in the ER, pro-insulin is transported into the Golgi apparatus where immature, pale secretory “progranules” are formed (6). These granules contain pro-insulin-zinc hexamers which are further processed into mature insulin and C-peptide by the prohormone convertases PC1/3 and PC2 (7). After maturation, the zinc-insulin hexamers form water-insoluble crystals (3). It has been suggested that crystal formation increases the degree of conversion of soluble pro-insulin to insoluble insulin, but nearly normal pro-insulin processing occurs in patients with mutated histidine-B10 insulin, which cannot crystallize (5). Furthermore, in several animal species such as guinea pig and hagfish, insulin does not have a histidine at position B10, so that no zinc-insulin crystals form; in these species, insulin is processed, and glucose homeostasis is normal (8, 9).

Two large zinc transporter families exist [reviewed in (10)]. Influx of zinc from the extracellular space into the cytosol is mediated by members of the, the Slc39 (ZIP, Zrt/Ita-like protein) protein family, which has 14 isoforms. Efflux of zinc into the extracellular space as well as transport of zinc from the cytosol into intracellular organelles is unknown. In this study we assessed the role of the zinc transporter ZnT8 using ZnT8-knockout (ZnT8^{−/−}) mice. Absence of ZnT8 expression caused loss of zinc release upon stimulation of exocytosis, but normal rates of insulin biosynthesis, normal insulin content and preserved glucose-induced insulin release. Ultrastructurally, mature dense core insulin granules were rare in ZnT8^{−/−} beta cells and were replaced by immature, pale insulin “progranules,” which were larger than in ZnT8^{+/+} islets. When mice were fed a control diet, glucose tolerance and insulin sensitivity were normal. However, after high-fat diet feeding, the ZnT8^{−/−} mice became glucose intolerant or diabetic, and islets became less responsive to glucose. Our data show that the ZnT8 transporter is essential for the formation of insulin crystals in beta cells, contributing to the packaging efficiency of stored insulin. Interaction between the ZnT8^{−/−} genotype and diet to induce diabetes is a model for further studies of the mechanism of disease of human ZNT8 gene mutations.
transporters (Fig. 1A). Furthermore, the mRNA expression profiles of ZnT8/−/− and ZnT8+/− mice were very similar; as we found no differences in expression of mRNA’s encoding other important beta-cell proteins (Fig. S2).

To investigate the consequence of beta-cell ZnT8 deficiency on islet zinc content, we performed in vivo and in vitro islet dithizone staining, a technique to distinguish pancreatic islets from exocrine cells (19), for instance used in vitro for human islet isolations (20) or in situ to visualise islets (21). ZnT8/−/− islets were negative with this staining, both in situ (Fig. 2A), and in isolated islets (Fig. 2B). These results indicate that there is a direct connection between beta cell expression of the ZnT8 transporter, which allows zinc influx in insulin secretory granules and islet reactivity to dithizone.

Zinc release from secretory granules from small clusters of ZnT8+/− and ZnT8−/− islet cells stimulated by 15 mM glucose and 1 μM forskolin was imaged with total internal fluorescence microscopy (TIRF) using FluoZin-3 (22). A strong difference between ZnT8+/− and ZnT8−/− beta cells was found (6.3 ± 1.1 vs. 0.07 ± 0.03 zinc exocytotic events/min, respectively, P < 0.0001) (Fig. 2C and D). A general defect of exocytosis in ZnT8−/− beta cells was excluded by measuring release of NPY-

Fig. 1. ZnT8 expression is absent in ZnT8−/− mice. (A) mRNA expression of the 10 known efflux zinc transporters (Slc30a family) analyzed via microarray (n = 3). (B) ZnT8 protein expression was analyzed via western blots. Please note complete absence of the expected MW for ZnT8 monomers (M) and SDS-resistant dimers (D), * = non-specific protein. (C) Immunohistochemistry of pancreatic sections from ZnT8−/− and ZnT8+/+ mice. In ZnT8+/+ mice ZnT8 protein is strongly expressed in all insulin-positive cells and weakly expressed in a minority of glucagon cells. Nuclei are stained blue by 4',6-diamidino-2-phenylindole (DAPI). (Scale bar, 10 μm.)

Fig. 2. ZnT8 is required for islet dithizone staining and glucose-regulated granular zinc release from beta cells. (A) Dithizone staining of pancreata from ZnT8+/+ and ZnT8−/− mice, 15 min after i.p. injection of the dye. Islets can be seen at the pancreatic surface of ZnT8+/+ mice but not of ZnT8−/− mice. (B) Dithizone staining of isolated islets is positive in ZnT8+/+ mice (red color) but negative in ZnT8−/− mice. (C) Zinc release from clusters of islet cells imaged by TIRF microscopy during 7 min. Cluster size was 3.7 ± 0.4 vs. 3.8 ± 0.3 cells, for ZnT8+/+ and ZnT8−/−, respectively (ns). Medium contained 8 μM FluoZin-3 and exocytosis was stimulated by 15 mM glucose and 1 μM forskolin. One zinc exocytotic event from a ZnT8−/− four-cell cluster is illustrated, boundaries between cells are shown as dotted lines (left panel). Images were taken every 30 ms in the region delimited by a square (middle panel), and the intensity of fluorescence for this release event is plotted on the right panel. Arrows show fluorescence intensity for the indicated time points illustrated in the middle panel. (D) Quantification of zinc exocytotic events in clusters of ZnT8+/+ and ZnT8−/− islet cells. The horizontal line shows the average of 18 clusters from three individual mice.
pHluorin, a pH sensitive probe (23) (Fig. S3 A and B) and by insulin release experiments (see following paragraph).

Replacement of Dense Core Secretory Granules in Beta Cells by Pale “Progranules” in Islets of ZnT8⁻/⁻ Mice. Because zinc influx in secretory granules should precede formation of zinc-insulin crystals, we next compared via transmission electron microscopy the ultrastructure of ZnT8⁺/⁺ and ZnT8⁻/⁻ beta cells. In control beta cells, most (>90%) secretory granules contained a typical dense core that is composed of zinc-insulin crystals (Fig. 3A, Left). In contrast, more than 90% of all secretory granules in beta cells from ZnT8⁻/⁻ mice had lost this condensed aspect and were completely filled with pale looking proteinaceous material (Fig. 3A, Right). Quantitatively, there was an almost all or none phenotypic difference between the two mouse strains (Fig. 3B). Furthermore, the mean diameter of the secretory granule was significantly larger in ZnT8⁻/⁻ mice than in ZnT8⁺/⁺ mice (Fig. 3C) so that the calculated secretory granule pool occupied a 12% larger fractional cell volume in ZnT8⁻/⁻ mice (Fig. 3D). These data show that ZnT8 is essential for zinc influx and zinc-insulin crystal formation. We further noted that the loss of dense core granules was correlated to loss of light reflection of isolated islets (Fig. 3E). While normal islets can be easily recognized in pancreatic digest because they appear brightly white ZnT8⁻/⁻ islets were dull greyish. We conclude that expression of ZnT8 transporters allows growth of zinc-insulin microcrystals in secretory granules shaping the ultrastructure dense cores and explaining bright light reflection of isolated islets.

Insulin Processing Is Not Affected in ZnT8⁻/⁻ Mice. To exclude that the enrichment of pale granules in ZnT8⁻/⁻ mice was the result of severely delayed pro-hormone processing, we performed three different experiments, each indicating that pro-insulin conversion to insulin is normal in ZnT8⁻/⁻ mice. First, total pancreatic immunoreactive (pro)-insulin content was the same in ZnT8⁻/⁻ and ZnT8⁺/⁺ mice (Fig. 4A). Second, isolated islets from ZnT8⁻/⁻ and ZnT8⁺/⁺ mice were labeled for 30 min with [35S]amino acids and chased for 30 min (upper panel) or 1 h (lower panel) in the presence of 10 mM glucose. Radioactive (pro)-insulin was quantified after immunoprecipitation, gel electrophoresis and autoradiography. Similar amounts of pro-insulin synthesis and conversion were found [30 min (~20%) and 1 h (~40%), (n = 3)] in both strains. (C) Glucose-induced insulin release. After overnight culture in 10 mM glucose (G), islets from adult ZnT8⁺/⁺ (black circle) and ZnT8⁻/⁻ (open circle) mice were perfused for 30 min with a medium containing 3 mM glucose. When indicated by the arrows, the glucose concentration was increased to 15 mM, the KATP channel opener diazoxide (Dz) was added, and the KCl concentration was increased from 4.8 to 30 mM. Data are mean ± SEM of four experiments.

Glucose-Induced Insulin Release and Calcium Changes Are Normal in ZnT8⁻/⁻ Mice. We next investigated whether the lack of insulin crystals had functional consequences at the level of glucose-induced insulin release. Because the water soluble pharmacu-
Zinc transporter 8 (ZnT8) is a zinc ion exporter found in beta cells of the pancreas, responsible for mediating zinc efflux during insulin secretion. Previous studies have suggested that ZnT8 deficiency may lead to glucose intolerance, but the underlying mechanisms are not fully understood. Our study investigated the role of ZnT8 in glucose homeostasis using ZnT8-deficient (ZnT8−/−) and wild-type (ZnT8+/+) mice on a control diet.

Diet-Dependent Induction of Glucose Intolerance in ZnT8−/− Mice. To assess the whole animal metabolic consequence of beta-cell ZnT8 deficiency, we measured basal blood glucose and insulin levels as well as glucose tolerance after i.p. injection of glucose in ZnT8−/− and ZnT8+/+ mice. In both sexes, random fed and fasting blood glucose levels were the same in both mouse strains when tested at age 12 and 25 weeks (Table S1). Furthermore, plasma insulin and glucagon levels were similar in ZnT8−/− and ZnT8+/+ mice (Table S2). When given a regular diet, glucose tolerance was the same in ZnT8−/− and ZnT8+/+ mice studied at age 6 weeks (Fig. 5A), 12 weeks (Fig. 5B), 25 weeks (Fig. 5C), and 1 year (Fig. 5D). Furthermore, no difference in insulin sensitivity was observed between ZnT8−/− and ZnT8+/+ mice at the age of 12 weeks (Fig. 5E). Figs. S6 and S7 show glucose tolerance for males and females separately. In contrast, glucose homeostasis deteriorated in ZnT8−/− mice upon prolonged feeding a high-fat diet (HFD). This regimen resulted in 10% larger weight gain in ZnT8−/− mice and a mild degree of glucose intolerance measured after 10 weeks (Fig. S8). With longer exposure to HFD, this difference deteriorated to overt diabetes (blood glucose level >14 mM) in half of the ZnT8−/− mice, while under the same conditions all of the control mice remained non-diabetic (P < 0.05—Fig. S8B). Two arguments support that β cell dysfunction is the cause for decompensation of glucose homeostasis: (i) islets of ZnT8−/− mice fed a HFD for 16 weeks lost part of glucose stimulated insulin release as compared to ZnT8+/+ islets (Fig. S8E), and (ii) insulin sensitivity remained normal (Fig. S8D).

Together, these data indicate that loss of ZnT8 expression in ZnT8−/− beta cells is well-tolerated when given a normal diet, but that beta cells fail, causing diabetes in some animals after prolonged HFD.

Discussion

Our study of ZnT8−/− mice provides results with respect to the role of ZnT8 and zinc in beta-cell biology. The most striking phenotypic changes in ZnT8−/− mice are (1) complete loss of islet dithizone staining, (2) loss of zinc release from secretory granules, (3) presence of pale “progranules” instead of dense-core granules that occupy a larger relative secretory granule volume, (4) normal glucose tolerance and adequate beta-cell function under standard laboratory conditions, and (5) failure of beta cells to maintain glucose homeostasis under the prolonged metabolic stress of a high-fat diet.

Our data strongly suggest that dithizone (27) stains islets red because of the presence of beta-cell zinc-insulin crystals. The exact reason for this intense staining reaction is unknown, but it is possible that the steric position of the two zinc ions in the crystal structure allows specific binding of the dye. Since ZnT8−/− beta cells do not secrete zinc after glucose/forskolin stimulation and since the other zinc transporters are expressed normally, our data indicate that ZnT8 is the only zinc transporter that can import zinc into the secretory granules for insulin crystal formation. Pale beta-cell secretory “progranules” were previously found to be enriched in biosynthetically active beta cells and were proposed to be filled with unprocessed, non-crystalline pro-insulin (6, 28). Radiometric analysis of pro-insulin synthesis and in situ peptidomics of islets in ZnT8+/+ and ZnT8−/− mice makes it unlikely that ZnT8-deficiency leads to immature granules because of a severe delay in pro-insulin processing. In fact, our data suggest that even when secretory granule zinc content is strongly reduced, proinsulin processing occurs normally. In agreement with this idea, normal insulin conversion occurs in guinea pig and hagfish, while at the same time beta cells in these species can form no zinc-insulin crystal (8, 9). The abundance of intact 5,800 Da insulin peptide as one sharp mass peak in the spectrum of islets of both ZnT8−/− and ZnT8+/+ mice excludes the possibility that zinc plays a major role in protecting cellular insulin stores from degradation. The lack of insulin crystal formation probably is the reason for the increased vesicle diameter, since soluble insulin can act as an osmolyte. As equal amounts of insulin are stored in wild-type and knockout pancreata, it is predicted that a larger volume percentage of the beta cell is taken by the granule pool. This idea is supported by the measurement of the relative surface area occupied by secretory granules, which is significantly increased in the ZnT8−/− mice.

We further show that insulin release (both time kinetics and the percent released per beta cell per hour) is well preserved in the absence of insulin crystals, meaning that dissolving insulin crystals in the islet interstitium does not delay the rate at which
insulin enters the circulation. Furthermore, ZnT8⁻/⁻ mice have normal pancreatic insulin content and unaltered insulin synthesis. Together with normal insulin sensitivity, these data explain the complete normal glucose tolerance of ZnT8⁻/⁻ when fed a normal diet. We extensively tested animals for glucose tolerance and in both sexes up to 1 year of age and found no abnormalities. It should be noted, however, that in a separate London colony of ZnT8⁻/⁻ mice, studied in parallel with our colony, impaired glucose tolerance was observed with standard diet, despite the existence of less dramatic alterations in granule morphology. Since the Leuven and London colonies were derived from the same mouse line, we wondered whether subtle changes in the environment could be responsible for differences in phenotype. To address this issue, we fed control animals and ZnT8⁻/⁻ mice a HFD, a condition known to increase the metabolic demand for insulin and which can trigger beta-cell failure in the presence of an underlying genetic defect (30, 31). In agreement with this idea, we observed progressive deterioration of glucose homeostasis with time in the knockout strain. This compensation is explained by abnormal beta-cell function as insulin sensitivity remained normal, while glucose stimulation of insulin release from isolated islets diminished. Other arguments are against this idea. First, we found no significant rise in plasma glucose levels in ZnT8⁻/⁻ mice (32); in these animals islet zinc content decreased (33). Since glucose stimulated zinc release is diminished in islets (31). In the ZnT8⁻/⁻ strain, it is conceivable that impaired granule packaging in beta cells that cannot form insulin crystals leads to secretory failure when the metabolic insulin demand is high. Our data are in agreement with the genetic screens in human subjects where polymorphisms in the SLC30A8 gene were detected in models of complex, multifactorial disease, rather than in monogenic forms of type 2 diabetes. Also in agreement with our own data, an independent ZnT8⁻/⁻ line was reported recently in which normal glucose tolerance was observed when the animals were given a standard diet (32); in these animals islet zinc content decreased dramatically, but insulin crystals were not measured; moreover, the influence of HFD was not tested.

Recently, the hypothesis was proposed that Zn²⁺, co-released with insulin, inhibits glucagon secretion in a paracrine manner (33). Since glucose stimulated zinc release is diminished in islets from ZnT8⁻/⁻ mice, it is conceivable that the mechanism of impaired glucose homeostasis is based upon derepression of the alpha cell rather than failure of glucose-stimulated insulin release from beta cells when glucose intolerance arises. Two arguments are against this idea. First, we found no significant rise in plasma glucagon levels in ZnT8⁻/⁻ mice. Second, Nicolson et al. observed that glucose suppression of glucagon release from isolated ZnT8⁻/⁻ islets was well preserved (29). Further work is needed to examine the possibility that small amounts of free zinc, co-secreted with soluble insulin, is still sufficient to inhibit alpha cell activity.

In summary, this study shows on the one hand that the ZnT8 transporter is absolutely essential for the formation of insulin crystals, but on the other hand that insulin crystallization per se is not required for normal glucose homeostasis in mice. The in vivo data suggest that zinc-insulin crystals allow a better insulin packaging efficiency in beta-cell granule stores, which seems relevant for resisting abnormal glucose homeostasis under the metabolic stress of a prolonged high fat diet. Since type 2 diabetes is a complex multifactorial disease, where genetic predisposition interacts with environmental factors, we believe that the mouse model described in the present paper may be of interest to further study the precise chain of events that occur in patients with ZNT8 gene mutations.

Materials and Methods

Generation of ZnT8⁻/⁻ Mice, Breeding, and Genotyping. All procedures involving mouse tissues were conducted according to guidelines approved by the K.U.Leuven animal welfare committee. The strategy to generate ZnT8⁻/⁻ mice is illustrated in Fig. S1. This procedure, performed by genOway, involved insertion of LoxP sites with a neomycin selection cassette upstream of exon 1 and within intron 1 of the gene. After homologous recombination in SV129-derived ES cells, and injection of recombinant cells into C57BL/6 blastocysts, the floxed mice were mixed with CMV-Cre-expressing C57BL/6j mice to generate heterozygous mice carrying the ZnT8⁺/⁻ allele. These mice were then crossed with WT C57Bl6/1 (Janvier) to generate heterozygous ZnT8⁻/⁻ mice which were bred to obtain homozygous male and female ZnT8⁻/⁻ and ZnT8⁻/⁻ mice that were used for all experiments in this study. Mice were fed a normal diet (sniff) or a HFD (Research Diets). The genotype of the mice was checked via PCR using primer MELL1-L2/F4 5'-GTCCTGTGTCGTGATGATGAG/G5'-CTCGTCTGGAAAAATACCCAGCTCC.

Isolation of Mouse Pancreatic Islets. Islets were isolated by injection of collagenase P (Roche) in the pancreatic duct followed by 3-min digestion at 37 °C, and dispersion by pipetting. Islets were hand-picked in HEPES Krebs buffer (20 mM HEPES, pH 7.4; 119 mM NaCl; 4.75 mM KCl; 2.54 mM CaCl₂; 1.2 mM MgSO₄; 1.18 mM KH₂PO₄; 5 mM NaHCO₃) containing 5 mM glucose and 0.5% BSA. Islet light microscopic brightness was evaluated with a cold light source (3,000 K) using a dissection microscope.

Zinc Transporter Gene Expression Analysis. Total RNA from mouse islets was extracted using the Absolutely RNA microprep (Stratagene) and was used to analyze mRNA expression via mouse Gene 1.0 ST arrays according to manufacturer’s manual 701880Rev4 (Affymetrix) (for detailed method see SI Text). Total protein extracts were obtained from freshly isolated islets which were lysed in S1 extraction buffer (50 mM Tris, pH 8; 1% Nonidet P-40; 150 mM NaCl; 1 mM EDTA). Protein extracts were separated by 4–12% SDS/PAGE (Invitrogen). ZnT8 antibody (Mellitech) and beta-actin antibody (Abcam) were used for immunodetection.

Zinc Staining with Dithizone. Dithizone staining was performed with a 0.13 mM dithizone solution in PBS for 5 min at room temperature for isolated islets or 15 min after i.p. injection [500 µL dithizone solution (10 mg/mL)] for in situ staining (34).

Measurement of Zinc Release via TIRF. Small clusters of islet cells from ZnT8⁻/⁻ and ZnT8⁻/⁻ mice were plated on coverslips 2 days before imaging. Experiments were performed at 37 °C as previously described (35). Fluozin-3 (Molecular Probes) was used at a final concentration of 8 µM/mL. Exocytosis was measured using a Nikon objective lens (Apo, 60×, numerical aperture = 1.49, infinity corrected) mounted on a Nikon Eclipse TE2000-E inverted microscope, using laser light of 491 nm excitation (Mag Biosystems) and 535 nm emission. Images were collected every 30 ms with a 30 ms-exposure during 7 min using a charge coupled device camera (Quantum, Roper Scientific) and MetaFluor software (Molecular Devices).

Ilet ZnT8 Immunostaining and Beta Cell Ultrastructure. ZnT8 immunostaining was performed on 6-µm cryosections of snap-frozen pancreata from ZnT8⁻/⁻ and ZnT8⁻/⁻ mice that were 4% formalin fixed and incubated with rabbit anti ZnT8 (Mellitech), guinea pig anti insulin (a gift of Dr. C. Van Schravendijk, Brussels, Belgium), mouse anti glucagon (Novo). Binding of primary antibodies was visualized with anti-rabbit Cy3, anti-mouse fluorescein isothiocyanate or anti-guinea pig isothiocyanate (Jackson Immunoresearch) and examined in a fluorescence microscope (Nikon) equipped with an Orca AG camera (Hamamatsu) and Nis-elements imaging software (Nikon). Controls included the use of primary antibodies absorbed with the antigen against which the antibody was raised. Beta cell ultrastructure was evaluated in intact pancreas immersion-fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.4), postfixed in 1% osmium tetroxide, stained with 2% uranyl acetate and embedded in Spurr’s resin. Ultrathin plastic sections from ZnT8⁻/⁻ and ZnT8⁻/⁻ pancreas were examined in a Tecnai 10 electron microscope (FEI).

In Situ Proteomics. Cryosections (10 µm) of pancreatic tissue were mounted on glass slides compatible with a conductive coating (Bruker Daltonics). Tissue was covered with matrix solution (alpha-cyano-4-hydroxy-cinnamic acid 7 mg/ml in acetonitrile 50%, 0.05% TFA) using a dedicated nanodrop spotter (Porit P630, Labcyte Inc.). MALDI mass profiling of the islets was performed by direct mass spectral measurement using an ABI 4800 MALDI.
TOF/TOF Analyzer (Applied Biosystems) running in linear mode. The selected mass over charge (m/z) range was 2,000–17,000 (24).

Measurement of Pro-Insulin Biosynthesis, Insulin Secretion, and Dynamics of [Ca²⁺]. Insulin biosynthesis was performed as described earlier (31), with minor changes as described in SI Text. Insulin release was measured as described before (30, 36) in batches of 25 overnight cultured ZnT8⁺/⁺ and ZnT8⁺/- islets perfused at 37 °C with test solutions of which the composition is indicated at the top of the figure. At the end of the experiments, the islets were recovered, and their insulin content was determined after extraction in acid-ethanol. Cytoplasmatic calcium was measured as described before (37) in overnight cultured ZnT8⁺/⁺ and ZnT8⁺/- islets loaded at 37 °C for 2 h with 2 μM fura-PE3-AM (MobiTec).

Glucose/Insulin Tolerance Tests and Insulin/Glucagon Assays. For the glucose tolerance tests, mice of 6, 12, and 25 weeks of age were fasted overnight (16 h). Glucose (2.5 mg/g BW) was administered i.p. and blood glucose levels were followed during 2 h using AccuCheck glucostrips. For insulin tolerance test, 6-h fasted mice were injected i.p. with insulin (0.75 mU/g BW) and blood glucose levels were measured as described above. Plasma insulin was measured from blood taken via the vena cava or the tail vein and centrifuged for 10 min at 1,100 × g at 4 °C. For glucagon measurements, aprotinin (250 IU/mL) was added to blood before centrifugation. Insulin content was measured in the total pancreas after dissection, snap freezing in liquid nitrogen, and homogenization in 75% ethanol; 0.1% Triton-X-100; 1:2 N HCl using a Dounce. (Pro-)insulin was quantified using ELISA (Crystal Chem) and glucagon was quantified using RIA (Linco).

ACKNOWLEDGMENTS. We thank Marleen Bergmans, Nicole Buelsens, and Juliane Carpent for excellent technical assistance and D. Daro for help constructing the adenovirus expressing pHfluorin. This work was supported by postdoctoral fellowships from the FWO Vlaanderen to K.L., and from the FNRS, Brussels to M.A.R. Research was further supported by grants of the European Union (EUROFIA FP6–518153), the Belgian Ministry for Science Policy (IUAP P6/40), SymBioSys (the K.U. Leuven center of excellence of Systems Biology), the K.U. Leuven (GOA 2004/11 and GOA 2008/16), and ARC (OS10–328) from the General Direction of Scientific Research of the French Community of Belgium. P.G. is research director from the FNRS, Brussels.