"Rare Eclipses in Quantised Random Embeddings of Disjoint Convex Sets: a Matter of Consistency?"

Cambareri, Valerio ; Xu, Chunlei ; Jacques, Laurent

Abstract
We study the problem of verifying when two disjoint closed convex sets remain separable after the application of a quantised random embedding, as a means to ensure exact classification from the signatures produced by this non-linear dimensionality reduction. An analysis of the interplay between the embedding, its quantiser resolution and the sets' separation is presented in the form of a convex problem; this is completed by its numerical exploration in a special case, for which the phase transition corresponding to exact classification is easily computed.

Document type: Communication à un colloque (Conference Paper)

Référence bibliographique
Rare Eclipses in Quantised Random Embeddings of Disjoint Convex Sets: a Matter of Consistency?

Valerio Cambareri, Chunlei Xu and Laurent Jacques

ISGGroup, ICTEAM/ELEN, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
E-mail: {valerio.cambareri, chunlei.xu, laurent.jacques}@uclouvain.be

Abstract—We study the problem of verifying when two disjoint closed convex sets remain separable after the application of a quantised random embedding, as a means to ensure exact classification from the signatures produced by this non-linear dimensionality reduction. An analysis of the interplay between the embedding, its quantiser resolution and the sets’ separation is presented in the form of a convex problem: this is completed by its numerical exploration in a special case, for which the phase transition corresponding to exact classification is easily computed.

I. PROBLEM STATEMENT

Non-linear dimensionality reduction techniques play an important role in simplifying statistical learning on very large-scale datasets. Among such techniques, we focus on quantised random embeddings obtained by a non-linear map A applied to $x \in \mathbb{R}^n$, that is

$$y = A(x) := Q_A(\Phi x + \xi)$$ \hspace{1cm} (1)

with $\Phi \in \mathbb{R}^{m \times n}$ a random sensing matrix, $Q_A(\cdot) := \delta[\varepsilon, \delta]$ a uniform scalar quantiser of resolution $\delta > 0$ (applied component-wise), and the signature $y \in \delta \mathbb{Z}^m$. In (1), the dithering $\xi \sim \mathcal{N}(0, [\delta])$ is a well-known means to stabilise the action of the quantiser [1], [2].

The non-linear map (1) is a non-adaptive dimensionality reduction that yields compact signatures for storage and transmission, while retaining a notion of quasi-isometry that enables the approximation of x [2], [3]. Consequently, distance-based learning tasks preserve their accuracy if run on $A(x)$ rather than x, provided some requirements are met on m, δ, the distribution of Φ and the “dimension” of \mathbb{K} as measured, e.g., by its Gaussian mean width $w(\mathbb{K}) := \sup_{x \in \mathbb{K}} \|g x\|$ with $g \sim \mathcal{N}(0, 1)$ (see, e.g., [2]). In this context we aim to show that, given two classes described by some sets $C_1, C_2 \subset \mathbb{K}$: $C_1 \cap C_2 = \emptyset$ and $x \in C_1 \cup C_2 \subset \mathbb{K}$, classifying whether x belongs to C_1 or C_2 is still possible from $y = A(x)$. For linear embeddings such as $y = \Phi x$, Bandeira et al. [4] approach the above classification problem as follows.

Problem 1 (Rare Eclipse Problem from [4]). Let $C_1, C_2 \subset \mathbb{R}$: $\cap = \emptyset$ be closed convex sets, $\sim \mathcal{N}^{m \times n}(0, 1)$. Given $\eta \in (0, 1)$, find the smallest m so that $p_0 := \mathbb{P}(C_1 \cap C_2 = \emptyset) \geq 1 - \eta$

Prob. 1 amounts to ensuring for all $x' \in C_1$, $x'' \in C_2$ that their images $\Phi x' \neq \Phi x''$. Using the difference set $\sim := C_1 - C_2 = \{x := x' - x'' : x \in C_1, x'' \in C_2\}$ we see the above problem equals

$$\mathbb{P}\{\forall z \in \sim, \Phi z \neq 0_m\} = 1 - \mathbb{P}\{\exists z \in \sim : \Phi z = 0_m\} \geq 1 - \eta$$

This requires a bound on the probability that the kernel of Φ “collides” with \sim, i.e., $\mathbb{P}(\ker(\Phi) \cap \sim = \emptyset) \leq \eta$, and [4] shows that η is small if m is large compared to the “dimension” of \sim as measured by $w(\sim) := \mathbb{E}(\|\Phi x\|_2 \in [0, 1])$ with \sim the cone generated by $C_1 - C_2$.

From this standpoint, extending such existing results on Prob. 1 to non-linear maps as (1) is non-trivial. Applying Φ to each closed convex set C_1 would produce two countable sets $\{A(C_1) = \{z \in \mathbb{R}^m : A(x) = \Phi (z)\} \subset \mathbb{Z}^m$, and assessing if they still “collide” is our key question below.

Problem 2 (Quantised Eclipse Problem). In the setup of Prob. 1, given $\eta \in (0, 1)$, find the smallest m so that $\mathbb{P}(A(C_1) \cap A(C_2) = \emptyset) \geq 1 - \eta$, i.e.,

$$p := \mathbb{P}\{\exists x' \in C_1, x'' \in C_2, A(x') = A(x'')\} \geq 1 - \eta$$

Note that the event in Prob. 2 requires $\mathbb{P}(\exists x' \in C_1, x'' \in C_2 : A(x') = A(x'')) \leq \eta$, i.e., a bound on the probability of existence of two consistent vectors (through the mapping A) that do not belong to the same set.

We here leverage the quantised restricted isometry property (QRIP) introduced in [2] to estimate η and the conditions on m. The QRIP establishes some conditions on m that ensure $\frac{1}{\sqrt{2m}} \|A(x') - A(x'')\| \geq (c' - \epsilon) \|x' - x''\| - \epsilon \delta$ where c' and ϵ are some constants, $c, \epsilon > 0$. Thus $A(x') \neq A(x'')$ if $H > 0$. In particular, we deduce the following proposition whose proof is postponed to an extended version of this work.

Proposition 1. In the setup of Prob. 1, given $\delta > 0$, $\eta \in (0, 1)$, $\sigma := \min_{z \in \mathbb{R}^n} \|z\|$ and the mapping A defined in (1), if

$$m \geq \left(\frac{\sigma^2}{2} + 2 \delta \eta \right) \log \left(1 + \frac{2 \sigma^2}{\eta^2} + C \log \frac{1}{\eta}\right)$$

then $C > 1$ not depending on m and η, then $\eta \leq 1 - \eta$.

Numerically testable but stronger conditions ensuring $p \leq 1 - \eta$ in Prob. 2 can be deduced as follows. We first note that if $\Phi z = 0_m$ for a given Φ and any $z \in \sim$, i.e., $\ker(\Phi) \cap \sim = \emptyset$, then $p_0 = 0$ for all $\delta > 0$ since then $\Phi x' + \xi = \Phi x'' + \xi$. Second, since $A(x') = A(x'')$ induces $\|\Phi z\|_\infty \leq \delta$ for $z := x' - x'' \in \sim$, proving $p_0 := \mathbb{P}(\Phi z \in \sim, \|\Phi z\|_\infty > \delta) \leq 1 - \eta$ will solve Prob. 2 since $p_0 \geq p_1$

We define accordingly a consistency margin $\tau := \inf_{z \in \sim} \mathbb{E} \|z\|_\infty$, with

$$z^* := \arg\min_{z \in \sim} \mathbb{E} \|z\|_\infty \text{ s.t. } z \in \sim := C_1 - C_2$$

Theorem 1 states (3) is clearly convex if K and \sim are convex. We anticipate that the construction of a certificate for this problem will provide a bound on $\tau > \delta$ when C is known, and analyse an exemplary case afterwards.

II. NUMERICAL TEST FOR TWO DISJOINT ℓ_2-BALLS

We consider the simple, yet broadly applicable convex case of two balls $C_1 = r_1 \mathbb{B}^2 + c$ and $C_2 = r_2 \mathbb{B}^2 + c$. With $r_1 = r_2$ and $c = r_1 + r_2$ (see Fig. 1). In this context $\|c\| = r + r$ and $\frac{c}{r} \leq \frac{1}{2}$ (Prop. 1). For \mathbb{R}^2 and $m = 2$, we are able to compute the consistency margin for each Φ on \sim, which is varied by fixing $r := r_2 + c$ and taking $\sigma := \|c\| - r = r_1 + r_2$. Then, we collect τ_m, i.e., the smallest r resulting from 2^m trials for each configuration (Fig. 2a), and also estimate on the same trials the probability $p_0 = \mathbb{P}(\tau > \Delta = 1)$ in Fig. 2b.

Fig. 2a reports several level curves of τ_m. For each curve, the event $A(C_1) \cap A(C_2) = \emptyset$ holds if $\tau \approx \tau_m$. While this condition is necessary but not sufficient, these level curves are compatible with the points $\frac{c}{r} = \frac{1}{2}$ (up to log factors) induced by (1) in Prop. 1. In Fig. 2b displays a sharp phase transition in the contours of \hat{p}_0. Despite the fact that $p_0 \geq \hat{p}_0$, the contours are also approximately aligned with the iso-probability curves that can be deduced from (2), i.e., $m \geq \frac{c}{r} \frac{\delta^2}{\hat{c}^2} \approx C \log \frac{1}{\epsilon}$, with $\hat{p}_0 \approx 1 - \eta$ for some $C, c > 1$.}

III. CONCLUSION AND OPEN QUESTIONS

The fundamental limits of learning tasks with embeddings are being tackled in several studies [5]-[8]. Our contribution expands the requirements for exact classification from the signatures produced by two closed convex sets after quantised random embeddings. We shall also specify this analysis to low-complexity structured sets \mathbb{K} (e.g., selecting disjoint “clusters” of sparse signals).

1 A matrix denoted by $M \sim X^{d_1 \times d_2}$ has entries $M_{ij} \sim_i u.d.$ for i, v, X.

2 By uniformity of $\ker(\Phi)$, $\Phi \sim \mathcal{N}^{m \times n}(0, 1)$ over the Grassmannian at the origin, it is legitimate to fix a randomly drawn direction $e/\|e\|$ for the simulations.
Figure 1. Geometrical intuition on the quantised eclipse problem for two disjoint ℓ_2-balls and $n = 3$, $m = 2$: (left) C_1 and C_2 are projected on Φ, identified by the unit vectors φ_1, φ_2; on these directions, we construct the lattice δZ^m, with a shift ξ of the origin due to dithering; the finite sets $A(C_1), A(C_2)$ are also reported, along with the consistency margin τ: (right) ensuring that $A(C_1) \cap A(C_2) = \emptyset$ requires that any $z \in C^-$ is so that its image under Φ has $\|\Phi z\|_\infty > \tau$; taking the smallest of such values on the difference set yields the consistency margin, which is $\tau = 0$ when $\text{Ker}(\Phi) \cap C^- \neq \emptyset$.

Figure 2. Empirical phase transitions of the quantised eclipse problem for the case of two disjoint ℓ_2-balls; for several random instances of Φ and as a function of σ and the dimensionality reduction rate $\frac{\log m}{\log n}$, we report (a) the contours of $\log_2 \tau_{\min}$; (b) the contours of $\tilde{\rho}_{\delta} = P[\tau > \delta] \approx 1 - \eta$ for $\delta := 1$. In (a), the level curves of τ_{\min} are compatible, up to log factors, with the points $\left\{ \left(\frac{\log m}{\log n}, \tau_{\min} \right) : m \approx \delta^2 n / \sigma^2 \right\}$ deduced from (2) in Prop. 1. In (b), the level curves of $\tilde{\rho}_{\delta}$ are also approximately aligned with the iso-probability curves $m - e^{- \frac{\tau_{\min}^2}{\delta^2}} n \approx C \log \left(\frac{1}{\eta} \right)$, also deduced from (2), once we set $\tilde{\rho}_{\delta} \approx 1 - \eta \in \{0.25, 0.5, 0.75, 0.9, 0.95\}$ for some $C, \epsilon > 1$.

REFERENCES