"Mean-field model analysis of deformation and damage in friction stir processed Mg-C composites"

Simar, Aude ; Mertens, Anne ; Ryelandt, Sophie ; Delannay, Francis ; Brassart, Laurence

Abstract
Friction Stir Processing (FSP) is an attractive manufacturing technique to produce Mg matrix composites since it avoids the problem of excessive reactivity between reinforcement and matrix encountered in liquid-phase processing routes. However, the strength of the interface in C-reinforced Mg matrix composites produced by FSP remains to be assessed. A short fibre composite has been fabricated by FSP a stack of a C-fabric between two Mg-AZ91D alloy sheets. In order to elucidate the interplay between matrix hardness and interface bonding strength, the work investigates the influence of heat treatment on the mechanical properties of the composites. An incremental Mori-Tanaka model is developed to analyse the relative roles of heat treatment and C-fibre reinforcement on the flow strength and ductility of the composites in tension and compression. The mean-field model provides an estimate of the stress at the matrix/fibre interface, from which a simple debonding criterion can be derived. ...

Référence bibliographique

DOI : 10.1016/j.msea.2018.03.043
Mean-field model analysis of deformation and damage in friction stir processed Mg-C composites

Aude Simara,*, Anne Mertensb, Sophie Ryelandtb, Francis Delannaya, Laurence Brassartc

a Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain, 2 Place Sainte Barbe, Bâtiment Réaumur L5.02.02, B-1348 Louvain-la-Neuve, Belgium
b A&M Department, Metallic Materials Science Unit, Faculty of Applied Science, Université de Liège, Quartier Polytech 1, 13A Allée de la Découverte, B-4000 Liège, Belgium
c Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia

Abstract

Friction Stir Processing (FSP) is an attractive manufacturing technique to produce Mg matrix composites since it avoids the problem of excessive reactivity between reinforcement and matrix encountered in liquid-phase processing routes. However, the strength of the interface in C-reinforced Mg matrix composites produced by FSP remains to be assessed. A short fibre composite has been fabricated by FSP a stack of a C-fabric between two Mg-AZ91D alloy sheets. In order to elucidate the interplay between matrix hardness and interface bonding strength, the work investigates the influence of heat treatment on the mechanical properties of the composites. An incremental Mori-Tanaka model is developed to analyse the relative roles of heat treatment and C-fibre reinforcement on the flow strength and ductility of the composites in tension and compression. The mean-field model provides an estimate of the stress at the matrix/fibre interface, from which a simple debonding criterion can be derived. Comparison between model predictions and experimental data indicates that damage in the FSP composites is triggered by early interfacial debonding. Based on Finite Element simulations of a tensile test carried out in-situ in a scanning electron microscope, the critical interfacial stress for debonding was identified to be 435 MPa in simple traction but only 250 MPa when damage is governed by shear. This explains the limited strengthening by C fibres observed in heat treated composites.