"Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS"

CMS Collaboration; Quertenmont, Loic; Chatrchyan, Serguei; Basegmez, Suzan; Bruno, Giacomo Luca; Caudron, Julien; Ceadr, Ludivine; Cortina Gil, Eduardo; de Favereau de Jeneret, Jérôme; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaître, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Ovyn, Séverine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas

ABSTRACT

A search for narrow resonances with a mass of at least 1 TeV in the dijet mass spectrum is performed using pp collisions at View the MathML source corresponding to an integrated luminosity of 1 fb–1, collected by the CMS experiment at the LHC. No resonances are observed. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark–quark, quark–gluon, and gluon–gluon pairs. The data exclude new particles predicted in the following models at the 95% confidence level: string resonances with mass less than 4.00 TeV, E6 diquarks with mass less than 3.52 TeV, excited quarks with mass less than 2.49 TeV, axigluons and colorons with mass less than 2.47 TeV, and W′ bosons with mass less than 1.51 TeV. These results extend previous exclusions from the dijet mass search technique.

CITE THIS VERSION

Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS

CERN Collaboration

A R T I C L E I N F O

Article history:
Received 24 July 2011
Received in revised form 3 September 2011
Accepted 5 September 2011
Available online 8 September 2011
Editor: M. Doser

Keywords:
LHC
CMS
Jet
Dijet
Resonance
Search

A B S T R A C T

A search for narrow resonances with a mass of at least 1 TeV in the dijet mass spectrum is performed using pp collisions at √s = 7 TeV corresponding to an integrated luminosity of 1 fb⁻¹, collected by the CMS experiment at the LHC. No resonances are observed. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark–quark, quark–gluon, and gluon–gluon pairs. The data exclude new particles predicted in the following models at the 95% confidence level: string resonances with mass less than 4.00 TeV, E⁹ diquarks with mass less than 3.52 TeV, excited quarks with mass less than 2.49 TeV, axigluons and colorons with mass less than 2.47 TeV, and W bosons with mass less than 1.51 TeV. These results extend previous exclusions from the dijet mass search technique.

© 2011 CERN. Published by Elsevier B.V. All rights reserved.

The Large Hadron Collider (LHC) has recently delivered an integrated luminosity in excess of 1 fb⁻¹ at a centre-of-mass energy √s = 7 TeV. This extends considerably the search territory for new physics. In this Letter we report a search for narrow resonances in the dijet mass spectrum, performed with the Compact Muon Solenoid (CMS) detector [1], with sensitivity exceeding that of our previous search [2]. Proton–proton collisions produce two or more energetic jets when the constituent partons are scattered with large transverse momenta, p_T. The invariant mass spectrum of the two jets with largest p_T (dijets) is predicted to fall steeply and smoothly by quantum chromodynamics (QCD). Many extensions of the standard model predict the existence of new massive objects that couple to quarks (q) and gluons (g), and result in resonances in the dijet mass spectrum.

We apply the results of this generic search to the following specific models of narrow s-channel dijet resonances:

- String resonances (S), which are Regge excitations of quarks and gluons in string theory and decay predominantly to qg [3, 4].
- Scalar diquarks (D), which decay to qq and qg, predicted by a grand unified theory based on the E⁶ gauge symmetry group [5].
- Mass-degenerate excited quarks (q′), which decay to qg, predicted if quarks are composite objects [6,7]; the compositeness scale is set to be equal to the mass of the excited quark.
- Axial-vector particles called axigluons (A), which decay to qg, predicted in a model where the symmetry group SU(3) of QCD is replaced by the chiral symmetry SU(3)L × SU(3)R [8].
- Color-octet colorons (C), also decaying to qg, predicted by the flavour-universal coloron model, embedding the SU(3) symmetry of QCD in a larger gauge group [9].
- New gauge bosons (W’ and Z’), which decay to q̄q̄, predicted by models that include new gauge symmetries [10]; the W’ and Z’ bosons are assumed to have standard model couplings.
- Randall–Sundrum (RS) gravitons (G), which decay to qg and gg, predicted in the RS model of extra dimensions [11]; the value of the dimensionless coupling κ/β_P is chosen to be 0.1.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m inner diameter providing an axial field of 3.8 tesla. Within the field volume at central values of pseudorapidity η are the silicon pixel and strip tracker (|η| < 2.4) and the barrel and endcap calorimeters (|η| < 3); a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadronic calorimeter (HCAL). An iron/quartz-fiber calorimeter is located in the forward region (3 < |η| < 5), outside the field volume. For triggering purposes and to facilitate jet reconstruction, the ECAL and HCAL cells are grouped into towers projecting radially outward from the centre of the detector. The energy deposits...
measured in the ECAL and the HCAL within each projective tower are summed to find the calorimeter tower energy. A more detailed description of the CMS experiment can be found elsewhere [1].

The CMS coordinate system has the origin at the center of the detector. The z-axis points along the direction of the anticlockwise beam, with the transverse plane perpendicular to the beam; ϕ is the azimuthal angle, θ is the polar angle, and the pseudorapidity is defined as $\eta = -\ln(\tan(\theta/2))$.

The integrated luminosity of the data sample selected for this analysis is 1.01 ± 0.06 fb$^{-1}$. Events are recorded using a two-tier trigger system. Objects satisfying the requirements at the first level (L1) are passed to the High Level Trigger (HLT). The sample was collected with a multijet trigger at the HLT, which is based on H_T, the sum of the transverse energies of all jets in the event with $p_T > 40$ GeV. The trigger selects events with H_T in the HLT exceeding 550 GeV. Another multijet trigger with a lower H_T threshold and a prescaling of events is used for the purpose of measuring trigger efficiencies. The trigger efficiency is measured from the data to be larger than 99.9% for dijet masses above 838 GeV.

To remove possible instrumental and non-collision backgrounds in the selected sample, jets are required to pass identification criteria that are fully efficient for signal [12]. Events are required to have a reconstructed primary vertex within the range $|z| < 24$ cm.

We consider two types of standard jets with different inputs: particle-flow jets, which we use for the search, and calorimeter jets, which we use as a check. The particle-flow algorithm [13] reconstructs all stable particles in an event by combining information from all subdetectors. The algorithm categorizes all particles into the following five types: muons, electrons, photons, charged hadrons, and neutral hadrons. Particle-flow jets use reconstructed particles as input to the jet reconstruction algorithm, while calorimeter jets use calorimeter energy deposits as the input.

The reconstructed jet energy E is defined as the scalar sum of the energies of the constituents of the jet, and the jet momentum \vec{p} is the corresponding vector sum of the momenta of the inputs. The jet transverse momentum p_T is the component of \vec{p} perpendicular to the beam. The values of E and \vec{p} of a reconstructed jet are corrected for the response of the detector to a generated jet, using Monte Carlo simulations, test beam results, and collision data [14]. Separate corrections are derived for calorimeter jets and for particle-flow jets. The corrections account for pileup of multiple pp collisions [15].

This analysis combines particle-flow jets reconstructed with the anti-k_T algorithm [16] into “wide jets”, which we use to measure the mass spectrum and search for new physics. Wide jets are the result of a radiation recovery algorithm for dijets, inspired by recent jet-grooming algorithms [17–19]. The partons from the decay of heavy objects can radiate additional partons, which are often produced at a large angle with respect to the original parton direction and thus are clustered into a separate jet by the anti-k_T jet-clustering algorithm. Wide jets collect more of this final-state radiation and therefore improve the mass resolution for dijet resonances. First, we reconstruct jets using the anti-k_T algorithm with distance parameters $R = 0.5$ (AK5 jets) and $R = 0.7$ (AK7 jets), which are the two standard choices we support for analysis at CMS. In our previous search [2] we used AK7 jets, since they have a larger distance parameter than AK5 jets and capture more radiation. Here we introduce wide jets reconstructed from AK5 jets to produce a wider jet than AK7. We correct the AK5 jet energy and select the two AK5 jets with the highest p_T in the event (leading AK5 jets). Then we add the Lorentz vectors of all other AK5 jets with $p_T > 10$ GeV and $|\eta| < 2.5$ to the closest AK5 leading jet, if within $\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} < 1.1$, to obtain the two leading wide jets. The parameter ΔR sets the maximum size of the wide jet.

The dijet system is composed of the two leading jets. We require that the pseudorapidity separation $\Delta \eta$ of the two leading jets satisfy $|\Delta \eta| < 1.3$, and that both jets be in the region $|\eta| < 2.5$. These $\Delta \eta$ and η requirements maximize the search sensitivity for isotropic decays of dijet resonances in the presence of QCD background. The dijet mass is given by $m = \sqrt{(E_1 + E_2)^2 - (p_1 + p_2)^2}$.

Select events with $m > 838$ GeV without any requirements on the p_T of the leading jet.

The number of events as a function of dijet mass is shown in Fig. 1 for both calorimeter and particle-flow AK7 jets; the observed rates agree. Fig. 1 also shows that the observed wide jet dijet mass distribution is shifted to higher mass because wide jets collect more energy.

Fig. 2 presents the inclusive dijet mass distribution for pp $\rightarrow 2$ leading wide jets + X, where X can be anything, including additional jets. Wide jets are used and we plot the measured differential cross section as a function of dijet mass in bins approximately equal to the dijet mass resolution [2]. The data are compared to a QCD prediction from PYTHIA v6.424 [20], which includes a simulation of the CMS detector and the jet energy corrections. The prediction uses a renormalization scale $\mu = p_T$ of the hard-scattered partons and CTEQ6L1 parton distribution functions [21], and has been normalized to the data by multiplying the prediction by a factor of 1.33. The shape of the PYTHIA prediction agrees with the data within the jet energy scale uncertainty, which is the dominant systematic uncertainty. To test the smoothness of our measured cross section as a function of dijet mass, we fit the following parameterization to the data:

$$\frac{d\sigma}{dm} = \frac{P_0 (1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2} + P_3 \ln (m/\sqrt{s})},$$

with four free parameters P_0, P_1, P_2, and P_3. This functional form is used in previous searches [22,23,24] to describe both data and QCD predictions. In Fig. 2 we show the fit, which has a chi-squared (χ^2) of 27.5 for 28 degrees of freedom, as well as the bin-by-bin significance, defined as the difference between the data and the fit value, divided by the statistical uncertainty of the data. Fig. 3 displays the ratio of the data to the fit. The data are well described by the smooth parameterization.
We search for narrow resonances, for which the natural resonance width is small compared to the CMS dijet mass resolution. Figs. 2 and 3 present the predicted dijet mass distribution for excited quark signals using PYTHIA v6.424 and the CMS detector simulation. The predicted mass distributions have a Gaussian core coming from the jet energy resolution and a tail towards lower mass from QCD radiation. This can be seen in Fig. 4, which shows examples of the predicted dijet mass distribution of resonances from three different parton pairings: $q\bar{q}$ (or qq) resonances from the process $G \rightarrow q\bar{q}$ [11], qg resonances from $q^* \rightarrow qg$ [6], and gg resonances from $G \rightarrow gg$ [11]. The increase of the width of the measured mass shape and the shift of the mass distribution towards lower masses are enhanced when the number of gluons in the final state is larger, because QCD radiation is larger for gluons than for quarks. The distributions in Fig. 4 are generically valid for other resonances with the same parton content and with a natural width small compared to the dijet mass resolution, and are examples of the shapes we use to set limits on dijet resonances. Wide-jet reconstruction gives a little better resolution than AK7-jet reconstruction, as shown in Fig. 4 for gg resonances. There is no indication of narrow resonances in our data, as shown in Figs. 2 and 3.

We use the dijet mass data from wide jets, the background (QCD) parameterization, and the dijet resonance shapes to set specific limits on new particles decaying to the parton pairs qq (or $q\bar{q}$), qg, and gg. The dominant sources of systematic uncertainty are the jet energy scale (2.2%), the jet energy resolution (10%), the integrated luminosity (6%), and the statistical uncertainty on the background parameterization, which are all considered nuisance parameters. The jet energy scale uncertainty is shown in Fig. 2 and is equivalent to a 15% uncertainty in the background cross section.

For setting upper limits we use a Bayesian formalism with a uniform prior for the signal cross section [25]. To incorporate systematic uncertainties we use a fully Bayesian treatment, integrating the likelihood over these nuisance parameters. We calculate the posterior probability density as a function of resonance cross section independently at each value of the resonance mass. Table 1 lists the generic upper limits at the 95% confidence level (CL) on $\sigma \times B \times A$, i.e. the product of the cross section (σ), the branching fraction (B), and the acceptance (A), for the kinematic requirements $|\Delta p| < 1.3$ and $|\eta| < 2.5$, for qq, qg, and gg resonances. The acceptance for isotropic decays is $A \approx 0.6$ independent of resonance mass. The observed upper limits in Table 1 can be compared to predictions of $\sigma \times B \times A$ at the parton level, without any detector simulation, in order to determine mass limits on new particles.
In Fig. 5 we compare the observed upper limits to the model predictions as a function of resonance mass. The predictions are compared to theoretical predictions for string resonances and excited quarks, axigluons, colorons, new gauge bosons W', Z', RS gravitons, E_6 diquarks, and Z' [10], and Randall–Sundrum gravitons [11].

In addition to these observed upper limits, we also calculate the expected upper limits using pseudo-experiments: searches conducted on random samples of events generated from our smooth background parameterization. The use of wide jets instead of AK7 jets improves the expected upper limits on the resonance cross section by roughly 20% for gg, 10% for qg, and 5% for qq resonances.

In Fig. 6 we compare the observed upper limits to the model predictions as a function of resonance mass. The predictions are compared to theoretical predictions for string resonances and excited quarks, axigluons, colorons, new gauge bosons W', Z', RS gravitons, E_6 diquarks, and Z' [10], and Randall–Sundrum gravitons [11].

Table 1

<table>
<thead>
<tr>
<th>Mass (TeV)</th>
<th>Upper limit (pb)</th>
<th>Mass (TeV)</th>
<th>Upper limit (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>qq</td>
<td>qg</td>
<td>gg</td>
<td>qq</td>
</tr>
<tr>
<td>1.0</td>
<td>1.098</td>
<td>1.245</td>
<td>1.851</td>
</tr>
<tr>
<td>1.1</td>
<td>0.777</td>
<td>0.909</td>
<td>1.374</td>
</tr>
<tr>
<td>1.2</td>
<td>0.662</td>
<td>0.732</td>
<td>1.079</td>
</tr>
<tr>
<td>1.3</td>
<td>0.486</td>
<td>0.535</td>
<td>0.803</td>
</tr>
<tr>
<td>1.4</td>
<td>0.284</td>
<td>0.332</td>
<td>0.518</td>
</tr>
<tr>
<td>1.5</td>
<td>0.231</td>
<td>0.265</td>
<td>0.395</td>
</tr>
<tr>
<td>1.6</td>
<td>0.201</td>
<td>0.226</td>
<td>0.326</td>
</tr>
<tr>
<td>1.7</td>
<td>0.168</td>
<td>0.190</td>
<td>0.280</td>
</tr>
<tr>
<td>1.8</td>
<td>0.115</td>
<td>0.138</td>
<td>0.207</td>
</tr>
<tr>
<td>1.9</td>
<td>0.113</td>
<td>0.131</td>
<td>0.183</td>
</tr>
<tr>
<td>2.0</td>
<td>0.121</td>
<td>0.140</td>
<td>0.193</td>
</tr>
<tr>
<td>2.1</td>
<td>0.108</td>
<td>0.130</td>
<td>0.183</td>
</tr>
<tr>
<td>2.2</td>
<td>0.093</td>
<td>0.115</td>
<td>0.160</td>
</tr>
<tr>
<td>2.3</td>
<td>0.089</td>
<td>0.108</td>
<td>0.148</td>
</tr>
<tr>
<td>2.4</td>
<td>0.085</td>
<td>0.102</td>
<td>0.138</td>
</tr>
<tr>
<td>2.5</td>
<td>0.077</td>
<td>0.092</td>
<td>0.125</td>
</tr>
</tbody>
</table>

In Fig. 6 we compare the observed upper limits to the model predictions as a function of resonance mass. The predictions are compared to theoretical predictions for string resonances and excited quarks, axigluons, colorons, new gauge bosons W', Z', RS gravitons, E_6 diquarks, and Z' [10], and Randall–Sundrum gravitons [11].

Table 1

<table>
<thead>
<tr>
<th>Mass (TeV)</th>
<th>Upper limit (pb)</th>
<th>Mass (TeV)</th>
<th>Upper limit (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>qq</td>
<td>qg</td>
<td>gg</td>
<td>qq</td>
</tr>
<tr>
<td>1.0</td>
<td>1.098</td>
<td>1.245</td>
<td>1.851</td>
</tr>
<tr>
<td>1.1</td>
<td>0.777</td>
<td>0.909</td>
<td>1.374</td>
</tr>
<tr>
<td>1.2</td>
<td>0.662</td>
<td>0.732</td>
<td>1.079</td>
</tr>
<tr>
<td>1.3</td>
<td>0.486</td>
<td>0.535</td>
<td>0.803</td>
</tr>
<tr>
<td>1.4</td>
<td>0.284</td>
<td>0.332</td>
<td>0.518</td>
</tr>
<tr>
<td>1.5</td>
<td>0.231</td>
<td>0.265</td>
<td>0.395</td>
</tr>
<tr>
<td>1.6</td>
<td>0.201</td>
<td>0.226</td>
<td>0.326</td>
</tr>
<tr>
<td>1.7</td>
<td>0.168</td>
<td>0.190</td>
<td>0.280</td>
</tr>
<tr>
<td>1.8</td>
<td>0.115</td>
<td>0.138</td>
<td>0.207</td>
</tr>
<tr>
<td>1.9</td>
<td>0.113</td>
<td>0.131</td>
<td>0.183</td>
</tr>
<tr>
<td>2.0</td>
<td>0.121</td>
<td>0.140</td>
<td>0.193</td>
</tr>
<tr>
<td>2.1</td>
<td>0.108</td>
<td>0.130</td>
<td>0.183</td>
</tr>
<tr>
<td>2.2</td>
<td>0.093</td>
<td>0.115</td>
<td>0.160</td>
</tr>
<tr>
<td>2.3</td>
<td>0.089</td>
<td>0.108</td>
<td>0.148</td>
</tr>
<tr>
<td>2.4</td>
<td>0.085</td>
<td>0.102</td>
<td>0.138</td>
</tr>
<tr>
<td>2.5</td>
<td>0.077</td>
<td>0.092</td>
<td>0.125</td>
</tr>
</tbody>
</table>
Table 2

For each model we list the observed and expected upper values of the excluded mass range at 95% CL. The lower value of the excluded mass range from this search is 1 TeV.

<table>
<thead>
<tr>
<th>Model</th>
<th>Observed (TeV)</th>
<th>Expected (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>String resonances</td>
<td>4.00</td>
<td>3.90</td>
</tr>
<tr>
<td>E_6 diquarks</td>
<td>3.52</td>
<td>3.28</td>
</tr>
<tr>
<td>Excited quarks</td>
<td>2.49</td>
<td>2.68</td>
</tr>
<tr>
<td>Axigluons/colorons</td>
<td>2.47</td>
<td>2.66</td>
</tr>
<tr>
<td>W' bosons</td>
<td>1.51</td>
<td>1.40</td>
</tr>
</tbody>
</table>

$0.6 < M(A, C) < 2.1$ TeV [24]. For W' bosons the expected mass limit is 1.40 TeV and we exclude masses less than 1.51 TeV; this extends the CDF exclusion of $0.3 < M(W') < 0.8$ TeV from the dijet mass spectrum [22]. We do not set any mass limits on Z' bosons and RS gravitons. The systematic uncertainties included in this analysis reduce the excluded upper masses by 0.03 TeV or less for each type of new particle.

In summary, the dijet invariant mass distribution has been measured to be a smoothly falling distribution, as expected within the standard model. There is no evidence for new particle production. We present generic upper limits on the product $\sigma \times B \times A$ that can be applied to any model of dijet resonance production. We set specific mass limits on string resonances, E_6 diquarks, excited quarks, axigluons, flavour-universal colorons, and W' bosons, all of which extend previous exclusions from the dijet mass search technique.

Acknowledgements

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff of CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MINERvA and CERN, arXiv:1107.4277, JINST (2011), submitted for publication.

References

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

National Centre for Particle and High Energy Physics, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

V. Adler, A. Cimmino, S. Costantini, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, N. Zaganidis

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

N. Beliy, T. Caebers, E. Daubie

Université de Mons, Mons, Belgium

G.A. Alves, L. Brito, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Instituto de Física Teórica, Universidade Estadual Paulista, Sao Paulo, Brazil

N. Darmenov , V. Genchev , P. Iaydjiev , P. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Dimitrov, R. Hadjiiska, A. Karadzhinova, V. Kozhuharov, L. Litov, M. Mateev, B. Pavlov, P. Petkov

University of Sofia, Sofia, Bulgaria

Institute of High Energy Physics, Beijing, China

Y. Ban, S. Guo, Y. Guo, W. Li, Y. Mao, S.J. Qian, H. Teng, B. Zhu, W. Zou

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear Physics "Demokritos", Aghia Paraskevi, Greece

L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Athens, Athens, Greece

I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

University of Ioannina, Ioannina, Greece

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

P. Raics, Z.L. Trocsanyi, B. Ujvari

University of Debrecen, Debrecen, Hungary

Punjab University, Chandigarh, India

S. Ahuja, B.C. Choudhary, P. Gupta, A. Kumar, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R.K. Shrivpuri

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research – EHEP, Mumbai, India

S. Banerjee, S. Dugad, N.K. Mondal

Tata Institute of Fundamental Research – HECR, Mumbai, India

Institute for Research and Fundamental Sciences (IPM), Tehran, Iran

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

E. Aguilo, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, A. Jaeger, B. Millan Mejias, P. Otiougova, P. Robmann, A. Schmidt, H. Snoek

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

M. Deliomeroglu, D. Demir, E. Gülmez, B. Isildak, M. Kaya, O. Kaya, M. Özbek, S. Ozkorucuklu, N. Sonmez

Bogazici University, Istanbul, Turkey

L. Levchuk

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, M. Mattson, C. Milstène, A. Sakharov

Wayne State University, Detroit, USA

University of Wisconsin, Madison, USA

* Corresponding author.
E-mail address: Roberto.Tenchini@cern.ch (R. Tenchini).

1 Deceased.

1 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
2 Also at Universidade Federal do ABC, Santo Andre, Brazil.
3 Also at California Institute of Technology, Pasadena, USA.
4 Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3–CNRS, Palaiseau, France.
5 Also at Suez Canal University, Suez, Egypt.
6 Also at British University, Cairo, Egypt.
7 Also at Fayoum University, El-Fayoum, Egypt.
8 Also at Ain Shams University, Cairo, Egypt.
9 Also at Soltan Institute for Nuclear Studies, Warsaw, Poland.
10 Also at Massachusetts Institute of Technology, Cambridge, USA.
11 Also at Université de Haute-Alsace, Mulhouse, France.
12 Also at Brandenburg University of Technology, Cottbus, Germany.
13 Also at Moscow State University, Moscow, Russia.
14 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
15 Also at Eötvös Loránd University, Budapest, Hungary.
16 Also at Tata Institute of Fundamental Research – HECR, Mumbai, India.
17 Also at University of Viva-Bharati, Santiniketan, India.
18 Also at Sharif University of Technology, Tehran, Iran.
19 Also at Shiraz University, Shiraz, Iran.
20 Also at Isfahan University of Technology, Isfahan, Iran.
21 Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
22 Also at Università della Basilicata, Potenza, Italy.
23 Also at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy.
24 Also at Università degli Studi di Siena, Siena, Italy.
25 Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia.
26 Also at University of California, Los Angeles, Los Angeles, USA.
27 Also at University of Florida, Gainesville, USA.
28 Also at Université de Genève, Geneva, Switzerland.
29 Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
30 Also at INFN Sezione di Roma, Università di Roma “La Sapienza”, Roma, Italy.
31 Also at University of Athens, Athens, Greece.
32 Also at The University of Kansas, Lawrence, USA.
33 Also at Paul Scherrer Institut, Villigen, Switzerland.
34 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
35 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
36 Also at Gaziosmanpasa University, Tokat, Turkey.
37 Also at Adiyaman University, Adiyaman, Turkey.
38 Also at The University of Iowa, Iowa City, USA.
39 Also at Mersin University, Mersin, Turkey.
40 Also at Izmir Institute of Technology, Izmir, Turkey.
41 Also at Kafkas University, Kars, Turkey.
42 Also at Suleyman Demirel University, Isparta, Turkey.
43 Also at Ege University, Izmir, Turkey.
44 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
45 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
46 Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.
47 Also at Utah Valley University, Orem, USA.
48 Also at Institute for Nuclear Research, Moscow, Russia.
49 Also at Los Alamos National Laboratory, Los Alamos, USA.
50 Also at Erzincan University, Erzincan, Turkey.