"Effect of acute environmental hypoxia on protein metabolism in human skeletal muscle"

D'Hulst, Gommaar; Jamart, Cécile; Van Thienen, Ruud; Hespel, Peter; Francaux, Marc; Dellicque, Louise

Abstract
Hypoxia-induced muscle wasting has been observed in several environmental and pathological conditions. However, the molecular mechanisms behind this loss of muscle mass are far from being completely elucidated, certainly in vivo. When studying the regulation of muscle mass by environmental hypoxia, many confounding factors have to be taken into account, such as decreased protein ingestion, sleep deprivation or reduced physical activity, which make difficult to know whether hypoxia per se causes a reduction in muscle mass. Aim: We hypothesized that acute exposure to normobaric hypoxia (11% O2) would repress the activation of the mTOR pathway usually observed after a meal and would activate the proteolytic pathways in skeletal muscle. Methods: Fifteen subjects were exposed passively for 4h to normoxic and hypoxic conditions in a random order after consumption of a light breakfast. A muscle biopsy and a blood sample were taken before, after 1h and 4h of exposure. Results: After 4h, plas...

Document type: Article de périodique (Journal article)

Référence bibliographique

DOI: 10.1111/apha.12086
Effect of acute environmental hypoxia on protein metabolism in human skeletal muscle

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Acta Physiologica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>APH-2012-11-0303.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Regular Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>D’Hulst, Gommaar; KU Leuven, Kinesiology Jamart, Cécile; Université catholique de Louvain, Institute of Neuroscience Van Thienen, Ruud; KU Leuven, Kinesiology Hespel, Peter; KU Leuven, Kinesiology Francaux, Marc; Université catholique de Louvain, Institute of Neuroscience Deldicque, Louise; KU Leuven, Kinesiology</td>
</tr>
<tr>
<td>Key Words:</td>
<td>insulin, NIRS, PKB, proteasome, S6K1</td>
</tr>
</tbody>
</table>
Effect of acute environmental hypoxia on protein metabolism in human skeletal muscle

Gommaar D’Hulst¹, Cécile Jamart², Ruud Van Thienen¹, Peter Hespel¹, Marc Francaux², Louise Deldicque¹

¹Department of Kinesiology, Exercise Physiology Research Group, FaBeR, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.

²Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348 Louvain-la-Neuve, Belgium.

Short title: Muscle protein metabolism in hypoxia

Corresponding author:

Louise Deldicque
Research Centre for Exercise and Health
FaBeR-KU Leuven
Tervuursevest 101
3001 Leuven, Belgium

E-mail: louise.deldicque@faber.kuleuven.be
Fax: +32 16 329091; Tel: +32 16 329088
Abstract

Hypoxia-induced muscle wasting has been observed in several environmental and pathological conditions. However, the molecular mechanisms behind this loss of muscle mass are far from being completely elucidated, certainly in vivo. When studying the regulation of muscle mass by environmental hypoxia, many confounding factors have to be taken into account, such as decreased protein ingestion, sleep deprivation or reduced physical activity, which make difficult to know whether hypoxia per se causes a reduction in muscle mass.

Aim: We hypothesized that acute exposure to normobaric hypoxia (11% O\textsubscript{2}) would repress the activation of the mTOR pathway usually observed after a meal and would activate the proteolytic pathways in skeletal muscle. Methods: Fifteen subjects were exposed passively for 4h to normoxic and hypoxic conditions in a random order after consumption of a light breakfast. A muscle biopsy and a blood sample were taken before, after 1h and 4h of exposure. Results: After 4h, plasma insulin concentration and the phosphorylation state of PKB and S6K1 in skeletal muscle were higher in hypoxia than in normoxia (p<0.05). At the same time Redd1 mRNA level was upregulated (p<0.05) whilst MAFbx mRNA decreased (p<0.05) in hypoxia compared to normoxia. Proteasome, cathepsin L and calpain activities were not altered by environmental hypoxia. Conclusion: Contrary to our hypothesis, and despite an increase in the mRNA level of Redd1, an inhibitor of the mTORC1 pathway, short-term acute environmental hypoxia induced a higher response of PKB and S6K1 to a meal, which may be due to increased plasma insulin concentration.

Key words: insulin, NIRS, PKB, proteasome, S6K1.
Introduction

Hypoxia is a state of lowered oxygen tension (PO$_2$) in tissue that can be created by environmental conditions such as high altitude, or by pathological conditions such as chronic obstructive pulmonary disease (Baldi et al. 2010), obstructive sleep apnea (Garvey et al. 2009) and anemia (Grocott et al. 2007). During exercise, hypoxia can also be generated but, contrary to the previous situations, oxygen restriction is then limited to skeletal muscle (Ameln et al. 2005). Whatever the origin of hypoxia, skeletal muscle cells will adapt acutely and/or chronically to deal with this reduction in oxygen availability. For example, patients exposed to chronic hypoxemia due to lung disease have a higher 5y mortality and an associated muscle wasting (Schols et al. 2005). Several studies revealed that highlanders and hikers undergo reductions in muscle fiber cross sectional area which is associated with increased capillarization (Hoppeler et al. 1990, MacDougall et al. 1991, Mizuno et al. 2008). Although contrasting results have been reported as well (Lundby et al. 2004), long lasting hypoxia generally leads to a negative regulation of protein metabolism and a loss of muscle mass.

Studies on cell culture and animals have provided some more insight into the mechanisms by which hypoxia negatively regulates protein metabolism. In a general way, hypoxia suppresses ATP- and energy-consuming processes like Na$^+$,K$^+$ ATPase activity or protein synthesis (Koumenis & Wouters 2006a). At a molecular level, a decrease in PO$_2$ activates the hypoxia-inducible factor-1 alpha (HIF-1α), a transcription factor regulating the expression of genes involved in a large spectrum of functions, i.e. angiogenesis, metabolic transition to anaerobic glycolysis, and cell motility and invasion (Koumenis & Wouters 2006b). Whether HIF-1α is directly responsible for the decrease in protein synthesis is unknown but HIF-1α and the mammalian target of rapamycin complex 1 (mTORC1) pathway, a key regulator of the mRNA translation machinery, have been shown to regulate each other (Cam et al. 2010).
Greer et al. 2012, Lee et al. 2009). On the other hand, hypoxia has also been shown to inhibit mTORC1 in a HIF-1α-independent way in cell cultures (Arsham et al. 2003). Whether these observations from cell cultures, where very low concentrations of oxygen (0-5% O2) are used, may be extrapolated to living organisms remains an open question.

Hypoxia inhibits mTORC1 through at least two intermediates: a small protein called 'regulated in development and DNA damage responses 1' (Redd1) (McGee & Hargreaves 2010), as well as the critical regulator of energy balance 5' AMP-activated protein kinase (AMPK) (Liu et al. 2006). Both Redd1 (McGee & Hargreaves 2010) and AMPK (Liu et al. 2006) inhibit mTORC1 through phosphorylation of the tuberous suppressor complex 2 (TSC2), which re-inforces the inhibition of this complex on mTORC1. Inhibition of mTORC1 results in downregulation of 5' terminal oligopyrimidine tract (TOP) mRNA translation through decreased phosphorylation of p70 ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), thereby inhibiting the formation of the eukaryotic initiation factor 4F (eIF4F) complex (Laplante & Sabatini 2012). Hypoxia seems also to impinge directly on the formation of this complex by altering the availability of eukaryotic initiation factor 4E (eIF4E) (Koritzinsky et al. 2006).

Endoplasmic reticulum (ER) stress and its downstream response, the unfolded protein response, is another mechanism that has recently been proposed to participate in the reduction of protein synthesis under hypoxia (Koritzinsky et al. 2006). Three main sensors, each of which initiates a branch of the unfolded protein response, contribute separately or coordinately for restoration of ER homeostasis; activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 alpha (IRE1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK). These three factors associate with the protein chaperone binding protein (BiP) in normal physiological conditions. Under ER stress, ATF6, IRE1α and PERK are released from BiP and may become activated (Ron & Walter 2007). Severe hypoxia
causes ER stress, as O_2 serves as an electron acceptor during oxidative protein folding, an ER process driving formation of disulfide bonds in proteins (Tagliavacca et al. 2012). When O_2 is insufficient, disulfide bonds cannot be formed, misfolded proteins accumulate, and the unfolded protein response is activated. However, the underlying molecular mechanisms are poorly understood (Wouters & Koritzinsky 2008). Hypoxia has been shown to activate PERK, which in turn phosphorylates eukaryotic initiation factor 2α (eIF2α) and inhibits translation initiation (Koumenis et al. 2002). The regulation of IRE1α and ATF6 by hypoxia has been less studied and requires further investigation.

Muscle protein degradation is a complex process implicating four systems: the lysosomal proteases (cathepsins), the calcium-dependent proteases (calpains), the caspases, and the ubiquitin–proteasome pathway (Jackman & Kandarian 2004). The latter mechanism is mainly regulated by E3 ligases among which are muscle atrophy F box (MAFbx) and muscle ring finger protein-1 (MuRF-1) (Bodine et al. 2001). The transcriptional regulation of MAFbx and MuRF-1 is controlled by, amongst others, the members of the forkhead FoxO family, themselves regulated by protein kinase B (PKB also called Akt) (Stitt et al. 2004). To the best of our knowledge, the effect of hypoxia on protein degradation has not been studied in human skeletal muscle.

When studying the regulation of muscle mass by environmental hypoxia, many confounding factors have to be taken into account. Long-term hypoxia at extreme altitude is known to reduce appetite and energy intake, to disturb the sleep cycle and to reduce physical activity, thereby indirectly favoring a catabolic state. It is thus difficult to determine whether the reduction of muscle mass observed after long-term exposure to hypoxia is due to decreased dietary protein ingestion, sleep deprivation, cold exposure, reduced physical activity or to other mechanisms of regulation. Most of the studies focusing on the regulation of protein metabolism by acute hypoxia have used an exercise paradigm. However, muscle contractile
activity per se is known to alter oxygen availability, thereby potentially indirectly affecting protein metabolism and adding one supplemental confounding factor. By simulating high altitude in a hypoxic facility, we were able to standardize the nutritional and the physical activity status of the subjects and to study more directly the acute effect of hypoxia on muscle protein metabolism. The purpose of the present study was thus to determine at a molecular level how acute environmental hypoxia regulates protein synthesis and breakdown in resting human skeletal muscle. Based on previous studies reporting a negative effect of hypoxia on muscle protein balance (Hoppeler et al. 1990, MacDougall et al. 1991, Mizuno et al. 2008), we hypothesized that hypoxia would repress the response to a breakfast by inhibiting key regulators of protein synthesis and by stimulating protein breakdown.
Materials and methods

Subjects

Fifteen healthy young men (age 21.3 ± 0.4 years; BMI 21.8 ± 0.45 kg·m⁻²) volunteered to participate in this study, which was approved by the local Ethics Committee (KU Leuven) and was in conformity with The Helsinki Declaration. The subjects were all physically active but they were not involved in any specific resistance training program during the period of the study. Subjects were asked to refrain from vigorous physical activity for 2 days, as well as to abstain from alcohol consumption the day before the experiments. Furthermore, they were not exposed for more than 7 days to an altitude above 1500 m within a period of 3 months preceding the start of the study. A medical check-up was done to detect any contraindications for exposure to extreme altitude and written consent was obtained from all subjects after explaining all potential risks of the study.

Study design

All subjects underwent 2 experimental sessions in a randomized cross-over designed order, with a 4-week interval period in between. In the normoxic trial (NOR) participants were exposed to normal atmospheric conditions (20.9 % O₂). In the hypoxic trial (HYP) participants inspired hypoxic air (~11 ± 0.1 % O₂).

Normoxic trial: The night before the experimental session subjects received a standardized dinner (58 % carbohydrates, 28 % fat and 14 % protein). After an overnight fast of at least 8 h, participants reported to the laboratory at 6:00 – 8:30 am where they received a standardized breakfast (65 % carbohydrates, 29 % fat and 6 % protein, total energy intake ranged from 489.0 kcal to 671.5 kcal according to the individual weight of the subjects). We chose to study the effect of environmental hypoxia after a light meal and not in the fasted state because we expected that hypoxia would create a state of anabolic resistance rather than impair basal
protein metabolism. After breakfast completion, a first near-infrared spectroscopy (NIRS) measurement (Hamamatsu NIRO 200, Louvain-la-Neuve, Belgium) of 20 min was performed to evaluate muscle oxygenation status via the tissue oxygenation index (TOI), which is a valid parameter to assess the fraction of O₂-saturated tissue hemoglobin and myoglobin content (Ferrari et al. 2004). One pair of NIRS probes, consisting of 1 light emitter and 1 light detector, was attached on the belly of the right m. vastus lateralis in parallel with the long axis of the muscle. We used the right leg for the NIRS measurements because the left leg was used for muscle biopsies. Before positioning of the probes, the skin was shaved to exclude interaction of hair as a chromophore. Forty minutes after completion of the breakfast (T0), a first biopsy sample, with the needle pointing proximally, was taken from the left m. vastus lateralis under local anesthesia (1-2 ml Lidocaine) through a 5-mm incision in the skin. Immediately after, a blood sample was taken from an antecubital vein. After the baseline measurements, which were all done in normoxic conditions, subjects were transferred to the air-conditioned (~21°C) hypoxic facility (Sporting Edge, Leicestershire, UK), yet maintained at 20.9 % O₂, where they rested in the seated position for 4 h while reading books or watching a movie. Immediately after entering the room, blood oxygen saturation (SpO₂) was measured by pulsoximetry (Oximax Nellcor, UK). One hour after the first biopsy (T60), a second biopsy was taken through the same incision as the first, yet with the needle pointing distally. Furthermore, a venous blood sample was taken. At T220 a second 20-min NIRS measurement was performed. Finally, at T240 the last biopsy and blood sample were taken. The last biopsy was taken with the needle pointing distally and through a new incision in the skin 3 cm distally to the first incision.

Hypoxic trial: All experimental conditions in the hypoxic trial were similar to those in the normoxic trial except that the hypoxic facility was maintained at 11 % ambient O₂ content (~5000 m altitude) instead of 20.9 %.
Western blot

Details of the immunoblotting procedures have been described previously (Deldicque et al. 2010b). Briefly, frozen muscle tissue (~20 mg) was homogenized 3 x 5 s with a Polytron mixer in ice-cold buffer (1:10, w/v) [50 mM Tris-HCl pH 7.0, 270 mM sucrose, 5 mM EGTA, 1 mM EDTA, 1 mM sodium orthovanadate, 50 mM glycerophosphate, 5 mM sodium pyrophosphate, 50 mM sodium fluoride, 1 mM DTT, 0.1 % Triton-X 100 and a complete protease inhibitor tablet (Roche Applied Science, Vilvoorde, Belgium)]. Homogenates were then centrifuged at 10000 g for 10 min at 4°C. The supernatant was collected and immediately stored at -80°C. The protein concentration was measured using the DC protein assay kid (Bio-Rad laboratories, Nazareth, Belgium). 30-80 µg of proteins were separated by SDS-PAGE (8-12 % gels) and transferred to PVDF membranes. Subsequently, membranes were blocked with 5 % non-fat milk for 1 h and afterwards incubated overnight (4°C) with the following antibodies (1:1000, Cell Signaling, Leiden, The Netherlands): phospho-Akt/PKB Ser^{473}, Akt/PKB pan, total eEF2, phospho-S6K1 Thr^{389}, total S6K1, phospho-4E-BP1 Thr^{37/46}, total 4E-BP1, p-FoxO1 Thr^{24}/FoxO3a Thr^{32}, total FoxO3a, p-eIF2α Ser^{51}, total eIF2α, BiP, C/EBP homologous protein (CHOP) and HIF-1α. Horseradish peroxidase-conjugated anti-mouse (1:10000), anti-rabbit (1:5000) or anti-goat (1:20000) secondary antibodies (Sigma-Aldrich, Bornem, Belgium) were used for chemiluminescent detection of proteins. Membranes were scanned and quantified with Genetools and Genesnap softwares (Syngene, Cambridge, UK), respectively. Then, membranes were stripped and re-probed with the antibody for the total form of the respective protein to ascertain the relative amount of the phosphorylated protein compared to the total form throughout the whole experiment. The results are presented as the ratio protein of interest/eEF2 or as the ratio phosphorylated/total forms of the proteins when the phosphorylation status of the protein was measured. A value of 1.0 was assigned to the
mean value of the first sample (T0) in NOR and in HYP to which all other values from the respective condition were reported.

RNA extraction and reverse transcription

The method used for reverse transcription is described in detail elsewhere (Jamart *et al.* 2011, Vincent *et al.* 2010). Briefly, total RNA was extracted using TRIzol (Invitrogen, Vilvoorde, Belgium) from 20-25 mg of frozen muscle tissue. RNA quality and quantity were assessed by spectrophotometry with a Nanodrop (Thermo Scientific, Erembodegem, Belgium). One µg of RNA was reverse transcribed using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Gent, Belgium) according to manufacturer’s instructions.

Real-time qPCR analysis

A SYBR Green-based master mix (Applied Biosystems) was used for real-time PCR analyses using the ABI PRISM 7300 (Applied Biosystems). Real time PCR primers were designed for human MuRF-1, MAFbx, Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3 (Bnip3), activating transcription factor 4 (ATF4), spliced XBP1 (XBP1s), CHOP, HIF-1α and Redd1 (Table 1). Thermal cycling conditions consisted of 40 three-step cycles including denaturation of 30 s at 95°C, annealing of 30 s at 58°C and extension of 30 s at 72°C. All reactions were performed in duplicate. To compensate for variations in input RNA amounts and efficiency of reverse transcription, cyclophilin A (Cyclo A) and beta-2-microglobulin (β-2-MG) mRNA where quantified, and results were normalized to these values. These genes were chosen out of five normalization genes using the GeNorm applet according to the guidelines and theoretical framework described elsewhere (Vandesompele *et al.* 2002). A value of 1.0 was assigned to the mean value of the first sample (T0) in NOR and in HYP to which all other values from the respective condition were reported.
Enzymatic activity assays

Enzymatic activities were determined fluorometrically using specific substrates and specific inhibitors. Each sample was assessed in triplicate with one replicate containing a specific inhibitor to the activity studied. 26S β5 subunit proteasome activity was determined by adding 100 µM Suc-LLVY-AMC (Calbiochem) to 10 µg proteins in a reaction buffer containing 50 mM Tris, pH7.5, 1 mM EDTA, 150 mM NaCl, 5 mM MgCl2, 0.5 mM DTT and 100 µM ATP, ± 20 µM epoxomicin. Cathepsin L activity was determined by adding 100 µM Z-Phe-Arg-AMC (Peptide Institute, Sandhausen, Germany) to 10 µg proteins in a buffer containing 100 mM Sodium Acetate, pH5.5, 1 mM EDTA, 1 mM DTT, ± 10 µM Cathepsin L Inhibitor I (Calbiochem, Overijse, Belgium). Calpain activity was determined by adding 200 µM Suc-LLVY-AMC (Calbiochem) to 10 µg proteins in a buffer containing 25 mM Tris, pH7.5, 0.5 mM EDTA, 5 mM CaCl2, 75 mM NaCl, 0.025 mM DTT, ± 125 µM Calpain Inhibitor IV (Calbiochem). Fluorescence was monitored every 5 min for 105 min on a fluorometer (Fluostar Optima, BMG labtech, Sint-Pieters-Leeuw, Belgium) at an excitation and emission wavelength of 370 nm and 460 nm, respectively. Enzymatic activities were calculated as the difference of the slope of the accumulation of fluorescence as a function of time in the absence of inhibitor and presence of inhibitor.

Analysis of blood samples

Plasma insulin and cortisol were assayed by chemiluminescence using the Siemens DPC kit according to the instructions of the manufacturer. **Blood glucose was measured with a glucocard x–meter (Arkray Inc. Kyoto, Japan).**

Statistical analyses
A repeated measures ANOVA design was used to assess the statistical significance of differences between mean values over time and between conditions. When appropriate, Holm-Sidak pairwise multiple comparison test was used as post-hoc. A Pearson correlation coefficient was calculated between ΔSpO\textsubscript{2} and ΔTOI values. The threshold of significance was set at 0.05. Results are expressed as the means ± SEM.

Results

Blood oxygen saturation/Tissue oxygenation index

\(\text{SpO}_{2}\): Mean SpO\textsubscript{2} was markedly lower (-25 %) in HYP than in NOR during the whole experimental trial (p<0.05, Table 2). Individual decreases in HYP compared to NOR ranged from 12 to 36 %.

\(\text{TOI}\): There were no differences in TOI between T0 and T240 in the NOR trial. Conversely, during the HYP trial TOI values were ~6 % lower at T240 than at T0 (p<0.05, Table 2). A correlation of \(r=0.451\) was found between \(\Delta\text{SpO}_2\) [(SpO\textsubscript{2} \text{NOR T240} - SpO\textsubscript{2} \text{NOR T0})-(SpO\textsubscript{2} \text{HYP T240} - SpO\textsubscript{2} \text{HYP T0})] and \(\Delta\text{TOI}\) [(TOI \text{NOR T240} - TOI \text{NOR T0})-(TOI \text{HYP T240} - TOI \text{HYP T0})] (p<0.05, data not shown).

Blood biochemistry

Insulin: Plasma insulin levels decreased throughout the experiment in both NOR and in HYP (p<0.05, Table 3) with a larger decrease observed in NOR, resulting in ~2 fold lower plasma insulin values in NOR compared to HYP at T240 (p<0.05).

Glucose: Blood glucose increased by 15% from T0 to T60 in NOR (p<0.05) but not in HYP, resulting in lower glucose concentrations in HYP compared to NOR at T60 (p<0.05). At 240, glucose values were similar to those at T0 in both NOR and HYP.
Cortisol: Plasma cortisol levels increased by about 30 % between T0 and T240 in NOR and in HYP (p<0.05, Table 3). No differences were present between NOR and HYP.

Effect of environmental hypoxia on the regulation of protein synthesis

Phosphorylation of PKB at Ser\(^{473}\) decreased from T0 to T240 in NOR (p<0.05), but not in HYP (Figure 1A), resulting in a ~40 % lower phosphorylation of PKB in NOR compared to HYP at T240 (p<0.05). Downstream of PKB and mTORC1, phosphorylation of S6K1 at Thr\(^{389}\) followed a similar phosphorylation pattern as PKB (Figure 1B), but the reduction in phosphorylation was more pronounced than for PKB in both NOR and HYP (p<0.05). Like phospho-PKB, phospho-S6K1 was lower in NOR compared to HYP at T240 (p<0.05). Phosphorylation of 4E-BP1 at Thr\(^{37/46}\) (Figure 1C), another downstream target of mTORC1, was not affected by any condition. We also measured the mRNA level of Redd1 as the latter is known to inhibit the mTOR pathway and to be up-regulated during hypoxia (Schwarzer et al. 2005). There was a trend to increase in the mRNA level of Redd1 during both experimental trials but this increase was only significant in HYP (T240, ~4-fold increase vs basal and ~2-fold increase vs NOR, p<0.05, Figure 1D).

Effect of environmental hypoxia on the regulation of protein breakdown

Activities of 26S proteasome β5, cathepsin L and calpain, which have been previously described as key proteins in muscle protein degradation (Jackman & Kandarian 2004), were assessed by fluorometric assays. Compared to T0, activity of 26S proteasome β5 increased by 19 % in NOR at T240 (p<0.05, Figure 2A). No time effect was observed in HYP. Cathepsin L and calpain activities showed the same activation pattern, although the statistical threshold was not reached (time effect for cathepsin L, p=0.089, Figure 2B; time effect for calpain, p=0.056, Figure 2C). The activity of the proteasome is regulated by E3 ligases, the 2 best
described of which in skeletal muscle are MAFbx and MuRF-1 (Bodine et al. 2001). Their expressions are under the control of a family of transcription factors called FoxO (Stitt et al. 2004). Phosphorylation of FoxO1/3a at Thr^{24/32} was higher at T60 and T240 than at basal in NOR (p<0.05), but not in HYP (Figure 2D). No differences between conditions were present. Neither MAFbx nor MuRF-1 mRNA expression followed the phosphorylation of FoxO1/3a. The mRNA levels of MuRF-1 was upregulated by ~15 % at T240 in HYP (p<0.05, Figure 2E). MAFbx mRNA content decreased throughout the experiment in both NOR and HYP. However, the decrease was larger in HYP compared to NOR (p<0.05, Figure 2F). Bnip 3 mRNA expression, a marker of the autophagy/lysosome pathway (Tracy et al. 2007), was not modified by the experimental conditions (Figure 2G).

Effect of environmental hypoxia on the unfolded protein response

Activation of the unfolded protein response, triggered by endoplasmic reticulum stress, was assessed by measuring several markers previously described (Deldicque et al. 2010a). ATF4 and spliced XBP1 mRNA contents increased at T240 compared to T0 but only in HYP (by 30 % for ATF4 and by 25 % for XBP1s, p<0.05, Figure 3A and B). Moreover, the mRNA expression of ATF4 was ~30 % higher in HYP compared to NOR at T240 (p<0.05, Figure 3A). BiP expression increased throughout the experiment in both conditions, but this increase was only significant in NOR at T240 (p<0.05, Figure 3E). CHOP protein expression tended to display a time effect (p=0.075) with a tendency to higher CHOP expression in HYP compared to NOR at T60 (p=0.055, Figure 3D). No effects were found in CHOP mRNA (Figure 3C) or eIF2α phosphorylation at Ser^{51} (Figure 3F).

Hypoxia inducible factor-1 and its downstream targets
The acute bout of hypoxia did not alter HIF-1α either at the mRNA level or at the protein level (Figure 4), neither did it activate the transcriptional activity of HIF-1α. To test the latter, we measured the expression of several genes known to be regulated by HIF-1α. Neither GLUT-1 nor GAPDH mRNA levels were modified in HYP (data not shown). VEGF-A mRNA was the only one to increase in HYP. At T240, VEGF-A mRNA content was ~1.5 fold higher in HYP compared to NOR (p<0.05, Figure 4B). We tried to quantify HIF-1α at the protein level. However, the basal expression in normoxia was barely detectable and hypoxia did not increase its expression (Figure 4C). To ensure that our antibody was able to detect modifications in the protein levels, we treated human umbilical vein endothelial cells (HUVEC) with 1 mM dimethyloxaloylglycine (DMOG), an inhibitor of the prolyl-hydroxylases to provoke accumulation of HIF-1α in the cell and 10 mM MG132, an inhibitor of the proteasome to block the degradation of HIF-1α. We were able to reproduce the results presented in the datasheet of the antibody (Cell Signaling), i.e. no increase of HIF-1α in MG-132-treated cells but a large increase in DMOG-treated cells, confirming thereby that if there had been any increase in muscle HIF-1α expression, we should have detected it in our conditions. All together our results show that the muscle HIF-1α pathway was not activated by acute environmental hypoxia and thus that the effects observed in the present study are probably HIF-1α-independent. However we did not separate membrane and cytosolic cell fractions. We can thus not rule out a possible translocation of HIF-1α to the cell nucleus. If this was the case, it did not result in higher transcriptional activity as measured by unchanged levels of mRNA known to be upregulated by HIF-1α.
Discussion

Hypoxia-induced muscle wasting has been previously described as a consequence of high altitude (Hoppeler et al. 1990, MacDougall et al. 1991, Mizuno et al. 2008) and several diseases (Grocott et al. 2007, Wust & Degens 2007), but the molecular mechanisms behind this loss of muscle mass are far to be elucidated. Contrary to our hypothesis and to previous reports on long-term environmental hypoxia, we show in the present study that acute and severe hypoxia alters the mTORC1 pathway in a way that is theoretically favorable for muscle protein accretion.

Up-regulation of the mTORC1 pathway by environmental hypoxia

Whereas it is generally accepted that hypoxia induces muscle wasting, there is clearly a lack of data describing the molecular mechanisms in human. Muscle wasting reflects a decrease in protein synthesis, an increase in protein breakdown or both at the same time. Only very few studies have attempted to clarify the molecular mechanisms by which acute or more prolonged environmental hypoxia regulates muscle mass in human. A slight decrease in total mTORC1 was found after 7-9 day sojourn at 4559 m (Vigano et al. 2008). In another recent study, subjects showed a blunted exercise-induced increase in muscle protein synthesis when breathing hypoxic air (12 % O₂) compared to normoxic air (Etheridge et al. 2011). Hypoxia did not modify phosphorylation of S6K1 or expression of Redd1 whether at rest or after exercise. In another study in rat soleus muscle, Redd1 expression was markedly increased and the PKB/mTORC1 pathway was concomitantly down-regulated after a 3-week exposure to 6300 m. Furthermore in hypoxemic patients suffering from chronic obstructive pulmonary disease, a substantial decrease in phosphorylation of several intermediates of the PKB/mTORC1 pathway was reported (Favier et al. 2010). In contrast to the aforementioned studies, our data show that PKB and S6K1 displayed a higher phosphorylation state after 4 h exposure to hypoxia following a meal. All biopsies were taken after a light meal explaining
why PKB and S6K1 phosphorylation decreased between the first and the third biopsy in normoxia and hypoxia. In hypoxia, however, the return to basal phosphorylation states was slowed down for both proteins. When subjects remained fasted for 3.5 h in hypoxia, S6K1 phosphorylation was not changed compared to pre-exposure (Etheridge et al. 2011), indicating that short-term hypoxia does not modify basal phosphorylation of S6K1. Based on our data, it is however likely that environmental hypoxia alters the response of S6K1 and PKB to a meal. According to previous in vitro studies (Koritzinsky et al. 2006), we could have expected a down-regulation of 4E-BP1 phosphorylation due to hypoxia. However, such increase did not occur. We choose to use an antibody specific to Thr37 and Thr46, the sites phosphorylated by mTORC1 as the aim of the study was to focus on the mTORC1 pathway. However Thr37 and Thr46 are also known to be less sensitive to serum and other growth factors than other sites of the protein, for example Thr65 and Thr70 (Gingras et al. 1999). We can thus not rule out that other sites of 4E-BP1, more sensitive to changes in insulin concentrations in vivo, reacted the same way as PKB and S6K1. However, it is difficult to screen each of them as six different sites (Thr 37, Thr 46, Ser 65, Thr 70, Ser 83 and Ser 112) have been discovered up to now (Gingras et al. 2001).

Redd-1 expression is regulated by HIF-1α-independent mechanisms

Redd-1 was originally discovered in cell cultures as a hypoxic-responsive gene (Shoshani et al. 2002) and since then many studies have confirmed that Redd-1 is a direct target of the transcription factor HIF-1α (Schwarzer et al. 2005). It has also been shown to act as an inhibitor of mTORC1 through regulation of 14-3-3 protein shuttling (DeYoung et al. 2008). Here, we show a clear elevation of Redd-1 mRNA after 4 h of exposure to hypoxia against the face of constant HIF-1α. We did not assessed Redd-1 at the protein level but it has previously been shown that the mRNA and protein expressions follow the same regulation pattern (Frost et al. 2009). Endoplasmic reticulum stress and its downstream adaptive response, the
unfolded protein response, have been proposed as another HIF-1α-independent mechanism by which Redd-1 can be up-regulated (Whitney et al. 2009). To test this hypothesis, we measured ATF4 and the active (spliced) form of XBP1 at the mRNA level and we found a higher expression of both genes after exposure to hypoxia, indeed. The unfolded protein response could also have contributed to the increase in VEGF-A mRNA, usually attributed to HIF-1α, that we observed at the end of the hypoxic trial. IRE1α and XBP1s have previously been reported to induce VEGF-A mRNA expression (Drogat et al. 2007). All together, our data show that PKB and S6K1 phosphorylation remained higher in hypoxia potentially due to higher plasma insulin concentrations and despite an increase in Redd-1 mRNA, a well-known inhibitor of the PKB/mTOR pathway. However, it is highly probable that other untested factors also contributed to the regulation of PKB and S6K1.

Environmental hypoxia affects protein breakdown to a minor extent

As mentioned above, protein breakdown has often been understudied in studies dealing with hypoxia. Two studies performed on animal models have directly investigated the effect of hypoxia on the different proteolytic pathways. Favier et al. did not find any effect of chronic hypoxia (3 weeks, 6300m) on any component of the proteasomal, lysosomal and calcium-dependent systems in rat skeletal muscle (Favier et al. 2010). On the contrary, Chaudhary et al. reported that chronic hypoxia (2 weeks, 7620m) induced muscle atrophy and that the proteasomal and calpain systems were activated at the same time (Chaudhary et al. 2012). Based on those 2 studies, a clear-cut conclusion is thus difficult to draw. Both used very similar methodologies except the strain (Whistar (Favier et al. 2010) vs Sprague-Dawley males (Chaudhary et al. 2012)), the altitude and the age of the animals. The latter issue could explain why Chaudhary, using young rats, found an increase in protein breakdown after exposure to hypoxia as protein turnover is known to be higher in younger rats than in adult rats. Growing rats are thus more sensitive to factors affecting protein synthesis and/or protein
breakdown. Moreover, in the study of Chaudhary, the altitude was 1000m higher than in the study of Favier, which has probably favored the catabolic state of the animals. In the present study, we did not find any change in either proteasome, or cathepsin, or calpain activities in adult subjects. This is the first time that protease activities are measured in skeletal muscle of subjects exposed to hypoxia. Based on our results, hypoxia seems to affect markers of protein synthesis to a larger extent than those of protein breakdown. Interestingly we found that independently of the hypoxic response, the activity of the 3 main proteolytic systems in skeletal muscle was higher a few hours after a light meal in normoxia. This higher activity could not be explained by a decreased phosphorylation of FoxO1/3a, a master regulator of protein breakdown, as contrary to what expected its phosphorylation increased throughout the normoxic trial. Although the activities of the proteasome, cathepsin and calpain systems were not modified, we hypothesized that short-term hypoxia could have altered some key regulators of these pathways. This would prepare the different machineries to become more activated in case of prolonged exposition to hypoxia. Several well-known markers of the ubiquitin-proteasome pathway (MuRF-1 and MAFbx mRNA) (Bodine et al. 2001), the autophagy-lysosome (Bnip3 mRNA) (Tracy et al. 2007) and the ER stress-associated degradation systems (CHOP mRNA and protein) (Oyadomari & Mori 2004) were quantified. Only MuRF-1 and MAFbx mRNA were modified after 4 h hypoxia and these changes occurred in an opposite way, MuRF-1 level being up-regulated and MAFbx down-regulated. Those 2 muscle-specific ligases have originally been thought to play a pivotal role in the regulation of the ubiquitin-proteasome pathway (Bodine et al. 2001). Since then, their role has been revised somewhat downwards and it is not uncommon to see a specific regulation of each factor (Greenhaff et al. 2008, Jamart et al. 2012). We could have expected that the higher insulin concentration induced by hypoxia would have affected protein breakdown to a larger extent as insulin is known to affect protein breakdown rather than protein synthesis in
skeletal muscle (Greenhaff et al. 2008). However it was not the case in the present study. It is possible that exposure to hypoxia modulates the response of protein breakdown to insulin usually observed in normoxia but this needs further investigation.

Acute environmental hypoxia does not activate HIF-1α in skeletal muscle

Acute exposure to 11 % O₂ resulted in a large decrease in SpO₂ in all subjects. Interestingly, individual SpO₂ drops ranged from 12 to 36 %, indicating a high variability in hypoxic adaptation between subjects. Irrespective of the large decrease in SpO₂, TOI only decreased by ~6 % in hypoxia, which is in line with previous studies (Martin et al. 2009). Even though oxygen supply to skeletal muscle is drastically reduced, muscle oxygenation seems to stay rather stable under severe environmental hypoxia, probably because of the low muscle oxygen consumption at rest and the high affinity of myoglobin for oxygen (Ordway & Garry 2004). It is noteworthy that, during exercise, TOI decreases much more severely than the 6 % presented here not only in hypoxia but in normoxia as well (Martin et al. 2009, Masschelein et al. 2012). This large decrease in tissue oxygenation induced by exercise is accompanied by an up-regulation of HIF-1α (Ameln et al. 2005) whereas in our resting conditions we did not measure any change of the latter whether at the protein or at the mRNA level. All the observations we made in the present study are thus independent of HIF-1α, which is not surprising as muscle oxygenation was barely affected. The latter suggests that other factors, that could be systemic, are involved in the activation of intramuscular signaling. Two likely candidates are insulin and cortisol, previously shown to be altered during hypoxic exposure (Larsen et al. 1997). Whereas plasma cortisol concentration was not modified by hypoxia, insulin returned more slowly to basal after a standardized breakfast in the hypoxic trial. Insulin concentration was 2 fold higher at the end of the exposure to environmental hypoxia and could partially explain several observations we made at this time, i.e. higher phosphorylation of PKB and S6K1. The higher insulin concentration in the group exposed to
hypoxia was not due to higher blood glucose concentrations. Glucose is a well-known stimulator of insulin secretion but the 4 h exposure to hypoxia did not increase glucose blood level compared to normoxia. **On the contrary, hypoxia tended to reduce blood glucose levels.** Although we could not measure plasma catecholamines concentrations due to a lack of sample, it is possible that adrenaline contributed to the increase in insulin as adrenaline increases at high altitude (Mazzeo et al. 1994) and it regulates insulin secretion by the pancreas (Lacey et al. 1993). It is also possible that adrenaline also directly altered protein metabolism as it has been shown to increase protein synthesis (Navegantes et al. 2004) and to repress proteolysis in rat skeletal muscle (Navegantes et al. 2000).

Limitations of the present study

The major limitation of the present study is not having taken a biopsy before the breakfast. The lack of sample at this time point does not allow drawing any conclusion about the effect of breakfast itself. However, this was not the purpose of the present study as the effect of feeding on protein synthesis and breakdown is already well-known (Atherton & Smith 2012). We also have to acknowledge that we did not directly measure protein synthesis and protein breakdown but we quantified several markers of those processes. Finally, the physiological challenges experienced by the human body at high altitude are far more complex than those experienced with the normobaric model used in this study. Therefore the results should be interpreted with caution when extrapolating to muscle protein synthesis and protein breakdown at high altitude.

Conclusion

In conclusion, contrary to our original hypothesis and despite an increase in the mRNA level of Redd1, an inhibitor of the mTOR pathway, short-term acute hypoxia induces a higher response of PKB and S6K1 4h after a meal that could at least partially been explained by an
increase in plasma insulin concentration. Further investigation will be required to study the repeated response to a standardized meal during chronic hypoxia which could differ from the one observed in the present study. Long-term exposure to hypoxia could create a state of anabolic resistance that we did not observe on a short-term.
Acknowledgements

The authors would like to thank Monique Ramaekers for technical assistance, Katrien De Bock for providing cell culture samples and the volunteers who participated to the present study. This work was supported by grants to PH from the "Onderzoeksraad KU Leuven" (OT09/33) and from the FWO Vlaanderen (G.0706.09) and to MF from the "Fonds de la Recherche Scientifique Médicale" (FRSM 3.4514.) and from the "Fonds Spéciaux de Recherche Université catholique de Louvain".

Conflict of interest

The authors do not have any conflicts of interest.
References

Tables

Table 1

<table>
<thead>
<tr>
<th>Primer sequences</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATF4</td>
<td>CCA ACA ACA GCA AGG AGG ATG</td>
<td>GTC ATC CAA CGT GGT CAG AAG G</td>
</tr>
<tr>
<td>Bnip3</td>
<td>CTG AAA CAG ATA CCC ATA GCA TT</td>
<td>CCG ACT TGA CCA ATC CCA</td>
</tr>
<tr>
<td>CHOP</td>
<td>CTG GCT TGG CTG ACT GAG GAG</td>
<td>CGG GCT GGG GAA TGA CC</td>
</tr>
<tr>
<td>HIF-1α</td>
<td>GCC CCA GAT TCA GGA TCA GA</td>
<td>TGG GAC TAT TAG GCT CAG GTG AAC</td>
</tr>
<tr>
<td>Redd1</td>
<td>TGA GGC ACG GAG TGG GAA</td>
<td>CAG CTC GAA GTC GGG CAA</td>
</tr>
<tr>
<td>MuRF-1</td>
<td>AAA CAG GAG TGC TCC AGT CGG</td>
<td>CGC CAC CAG CAT GGA GAT ACA</td>
</tr>
<tr>
<td>MAFbx</td>
<td>CCC AAG GAA AGA GCA GTA TGG AGA</td>
<td>GGG TGA AAG TGA AAC GGA GCA</td>
</tr>
<tr>
<td>XBP1s</td>
<td>CCG CAG CAG GTG CAG G</td>
<td>GAG TCA ATA CCG CCA GAA TCC A</td>
</tr>
<tr>
<td>CycloA</td>
<td>CTT CAT CCT AAA GCA TAC GGG TC</td>
<td>TGC CAT CCA ACC ACT CAG TCT</td>
</tr>
<tr>
<td>β-2-MG</td>
<td>ATG AGT ATG CCT GCC GTG TGA</td>
<td>GGC ATC TTC AAA CCT CCA TG</td>
</tr>
</tbody>
</table>

ATF4, activating transcription factor 4; Bnip3, Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3; CHOP, C/EBP homologous protein; HIF-1α, hypoxia-inducible factor-1 alpha; Redd1, regulated in development and DNA damage responses 1; MuRF-1, muscle ring finger protein-1; MAFbx, muscle atrophy F box; XBP1s, spliced X-box binding protein 1; CycloA, cyclophilin A; β-2-MG, beta-2-microglobulin.
Table 2

Table 2. *Arterial oxygen saturation and tissue oxygenation index values*

<table>
<thead>
<tr>
<th></th>
<th>Mean during whole experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO₂ (%)</td>
<td></td>
</tr>
<tr>
<td>NOR</td>
<td>99.0 ± 0.2</td>
</tr>
<tr>
<td>HYP</td>
<td>75.5 ± 2.0†</td>
</tr>
<tr>
<td>TOI (%)</td>
<td></td>
</tr>
<tr>
<td>NOR</td>
<td>69.7 ± 1.5</td>
</tr>
<tr>
<td>HYP</td>
<td>70.8 ± 2.0</td>
</tr>
</tbody>
</table>

‡p<0.05 vs NOR; *p<0.05 vs T0.

Mean arterial oxygen saturation (SpO₂) during the whole experiment and tissue oxygenation index (TOI) at the start (T0) and at the end (T240) of the experimental session in either normoxia (NOR) or hypoxia (HYP). Values are means ± SEM (n=15). ‡p<0.05 vs NOR; *p<0.05 vs T0.
Table 3. **Plasma insulin, blood glucose and plasma cortisol concentrations**

<table>
<thead>
<tr>
<th></th>
<th>T0</th>
<th>T60</th>
<th>T240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin (µU·ml⁻¹)</td>
<td>NOR</td>
<td>27.3 ± 3.6</td>
<td>20.9 ± 3.6</td>
</tr>
<tr>
<td></td>
<td>HYP</td>
<td>31.5 ± 4.3</td>
<td>17.9 ± 3.3*</td>
</tr>
<tr>
<td>Glucose (mg·dl⁻¹)</td>
<td>NOR</td>
<td>94.2 ± 2.5</td>
<td>110.1 ± 5.4*</td>
</tr>
<tr>
<td></td>
<td>HYP</td>
<td>86.0 ± 4.0</td>
<td>89.5 ± 4.7†</td>
</tr>
<tr>
<td>Cortisol (nM)</td>
<td>NOR</td>
<td>257.8 ± 13.1</td>
<td>305.9 ± 20.5</td>
</tr>
<tr>
<td></td>
<td>HYP</td>
<td>234.9 ± 14.9</td>
<td>310.6 ± 24.3*</td>
</tr>
</tbody>
</table>

Plasma insulin, blood glucose and plasma cortisol concentrations at basal (T0), after 1h (T60) and after 4h (T240) in normoxia (NOR) or in hypoxia (HYP). Values are means ± SEM (n=15). *p<0.05 vs T0; †p<0.05 vs T60; ‡p<0.05 vs NOR.
Figure captions

Figure 1. Effect of hypoxia on protein synthesis markers and regulators. (a) PKB, (b) S6K1, (c) 4E-BP1 phosphorylation and (d) Redd1 mRNA level at basal (0), after 1h (60) and after 4h (240) in normoxia (NOR) or in hypoxia (HYP). (e) Representative blots. Data shown are expressed as means ± SEM (n=15). *p<0.05 vs T0; †p<0.05 vs T60; ‡p<0.05 vs NOR.

Figure 2. Effect of hypoxia on protein breakdown markers and regulators. (a) 26S β5 proteasome activity, (b) cathepsin L activity, (c) calpain activity, (d) FoxO1/3a phosphorylation, (e) MuRF-1, (f) MAFbx and (g) Bnip3 mRNA levels at basal (0), after 1h (60) and after 4h (240) in normoxia (NOR) or in hypoxia (HYP). (h) Representative blots. Data shown are expressed as means ± SEM (n=15). *p<0.05 vs T0; ‡p<0.1 vs T0; †p<0.05 vs NOR.

Figure 3. Effect of acute hypoxia on markers of the unfolded protein response. (a) ATF4, (b) XBP1s and (c) CHOP mRNA levels, (d) CHOP and (e) BiP protein expressions and (f) eIF2α phosphorylation at basal (0), after 1h (60) and after 4h (240) in normoxia (NOR) or in hypoxia (HYP). (g) Representative blots. Data shown are expressed as means ± SEM (n=15). *p<0.05 vs T0; †p<0.05 vs NOR.

Figure 4. Effect of acute hypoxia on the hypoxia-inducible factor pathway. (a) HIF-1α mRNA level (b) VEGF-A mRNA level at basal (0), after 1h (60) and after 4h (240) in normoxia (NOR) or in hypoxia (HYP). (c) Representative western blot for HIF-1α from one subject and the different controls we used on HUVEC cell cultures (see material and methods for further details). Data shown are expressed as means ± SEM (n=15). *p<0.05 vs T0; ‡p<0.05 vs T60; †p<0.05 vs NOR.
Physiological relevance

Hypoxia-induced muscle wasting has been observed in several environmental (such as altitude) and pathological (such as lung diseases) conditions. However, the molecular mechanisms behind this loss of muscle mass are far from elucidated, certainly in vivo. To the best of our knowledge, no study has previously reported the effect of hypoxia on protein degradation in human skeletal muscle and protein synthesis has only been scarcely studied at a molecular level. The present paper reports new mechanistic explanations about the regulation of muscle protein metabolism which is not only important for hikers who lose muscle mass during ascent but also for patients suffering from lung diseases or anemia who present reduced muscle mass.
Effect of acute environmental hypoxia on protein metabolism in human skeletal muscle

Gommaar D’Hulst¹, Cécile Jamart², Ruud Van Thienen¹, Peter Hespel¹, Marc Francaux², Louise Deldicque¹

¹Department of Kinesiology, Exercise Physiology Research Group, FaBeR, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.

²Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348 Louvain-la-Neuve, Belgium.

Short title: Muscle protein metabolism in hypoxia

Corresponding author:

Louise Deldicque
Research Centre for Exercise and Health
FaBeR-KU Leuven
Tervuursevest 101
3001 Leuven, Belgium
E-mail: louise.deldicque@faber.kuleuven.be
Fax: +32 16 329091; Tel: +32 16 329088
Abstract

Hypoxia-induced muscle wasting has been observed in several environmental and pathological conditions. However, the molecular mechanisms behind this loss of muscle mass are far from being completely elucidated, certainly in vivo. When studying the regulation of muscle mass by environmental hypoxia, many confounding factors have to be taken into account, such as decreased protein ingestion, sleep deprivation or reduced physical activity, which make difficult to know whether hypoxia per se causes a reduction in muscle mass.

Aim: We hypothesized that acute exposure to normobaric hypoxia (11% O₂) would repress the activation of the mTOR pathway usually observed after a meal and would activate the proteolytic pathways in skeletal muscle. Methods: Fifteen subjects were exposed passively for 4h to normoxic and hypoxic conditions in a random order after consumption of a light breakfast. A muscle biopsy and a blood sample were taken before, after 1h and 4h of exposure. Results: After 4h, plasma insulin concentration and the phosphorylation state of PKB and S6K1 in skeletal muscle were higher in hypoxia than in normoxia (p<0.05). At the same time Redd1 mRNA level was upregulated (p<0.05) whilst MAFbx mRNA decreased (p<0.05) in hypoxia compared to normoxia. Proteasome, cathepsin L and calpain activities were not altered by environmental hypoxia. Conclusion: Contrary to our hypothesis, and despite an increase in the mRNA level of Redd1, an inhibitor of the mTORC1 pathway, short-term acute environmental hypoxia induced a higher response of PKB and S6K1 to a meal, which may be due to increased plasma insulin concentration.

Key words: insulin, NIRS, PKB, proteasome, S6K1.
Introduction

Hypoxia is a state of lowered oxygen tension (PO$_2$) in tissue that can be created by environmental conditions such as high altitude, or by pathological conditions such as chronic obstructive pulmonary disease (Baldi *et al.* 2010), obstructive sleep apnea (Garvey *et al.* 2009) and anemia (Grocott *et al.* 2007). During exercise, hypoxia can also be generated but, contrary to the previous situations, oxygen restriction is then limited to skeletal muscle (Ameln *et al.* 2005). Whatever the origin of hypoxia, skeletal muscle cells will adapt acutely and/or chronically to deal with this reduction in oxygen availability. For example, patients exposed to chronic hypoxemia due to lung disease have a higher 5y mortality and an associated muscle wasting (Schols *et al.* 2005). Several studies revealed that highlanders and hikers undergo reductions in muscle fiber cross sectional area which is associated with increased capillarization (Hoppeler *et al.* 1990, MacDougall *et al.* 1991, Mizuno *et al.* 2008). Although contrasting results have been reported as well (Lundby *et al.* 2004), long lasting hypoxia generally leads to a negative regulation of protein metabolism and a loss of muscle mass.

Studies on cell culture and animals have provided some more insight into the mechanisms by which hypoxia negatively regulates protein metabolism. In a general way, hypoxia supresses ATP- and energy-consuming processes like Na$^+$,K$^+$ ATPase activity or protein synthesis (Koumenis & Wouters 2006a). At a molecular level, a decrease in PO$_2$ activates the hypoxia-inducible factor-1 alpha (HIF-1α), a transcription factor regulating the expression of genes involved in a large spectrum of functions, i.e. angiogenesis, metabolic transition to anaerobic glycolysis, and cell motility and invasion (Koumenis & Wouters 2006b). Whether HIF-1α is directly responsible for the decrease in protein synthesis is unknown but HIF-1α and the mammalian target of rapamycin complex 1 (mTORC1) pathway, a key regulator of the mRNA translation machinery, have been shown to regulate each other (Cam *et al.* 2010,
Greer et al. 2012, Lee et al. 2009). On the other hand, hypoxia has also been shown to inhibit mTORC1 in a HIF-1α-independent way in cell cultures (Arsham et al. 2003). Whether these observations from cell cultures, where very low concentrations of oxygen (0-5% O₂) are used, may be extrapolated to living organisms remains an open question.

Hypoxia inhibits mTORC1 through at least two intermediates: a small protein called 'regulated in development and DNA damage responses 1' (Redd1) (McGee & Hargreaves 2010), as well as the critical regulator of energy balance 5' AMP-activated protein kinase (AMPK) (Liu et al. 2006). Both Redd1 (McGee & Hargreaves 2010) and AMPK (Liu et al. 2006) inhibit mTORC1 through phosphorylation of the tuberous suppressor complex 2 (TSC2), which re-inforces the inhibition of this complex on mTORC1. Inhibition of mTORC1 results in downregulation of 5' terminal oligopyrimidine tract (TOP) mRNA translation through decreased phosphorylation of p70 ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), thereby inhibiting the formation of the eukaryotic initiation factor 4F (eIF4F) complex (Laplanche & Sabatini 2012). Hypoxia seems also to impinge directly on the formation of this complex by altering the availability of eukaryotic initiation factor 4E (eIF4E) (Koritzinsky et al. 2006).

Endoplasmic reticulum (ER) stress and its downstream response, the unfolded protein response, is another mechanism that has recently been proposed to participate in the reduction of protein synthesis under hypoxia (Koritzinsky et al. 2006). Three main sensors, each of which initiates a branch of the unfolded protein response, contribute separately or coordinately for restoration of ER homeostasis; activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 alpha (IRE1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK). These three factors associate with the protein chaperone binding protein (BiP) in normal physiological conditions. Under ER stress, ATF6, IRE1α and PERK are released from BiP and may become activated (Ron & Walter 2007). Severe hypoxia
causes ER stress, as O₂ serves as an electron acceptor during oxidative protein folding, an ER process driving formation of disulfide bonds in proteins (Tagliavacca et al. 2012). When O₂ is insufficient, disulfide bonds cannot be formed, misfolded proteins accumulate, and the unfolded protein response is activated. However, the underlying molecular mechanisms are poorly understood (Wouters & Koritzinsky 2008). Hypoxia has been shown to activate PERK, which in turn phosphorylates eukaryotic initiation factor 2α (eIF2α) and inhibits translation initiation (Koumenis et al. 2002). The regulation of IRE1α and ATF6 by hypoxia has been less studied and requires further investigation.

Muscle protein degradation is a complex process implicating four systems: the lysosomal proteases (cathepsins), the calcium-dependent proteases (calpains), the caspases, and the ubiquitin–proteasome pathway (Jackman & Kandarian 2004). The latter mechanism is mainly regulated by E3 ligases among which are muscle atrophy F box (MAFbx) and muscle ring finger protein-1 (MuRF-1) (Bodine et al. 2001). The transcriptional regulation of MAFbx and MuRF-1 is controlled by, amongst others, the members of the forkhead FoxO family, themselves regulated by protein kinase B (PKB also called Akt) (Stitt et al. 2004). To the best of our knowledge, the effect of hypoxia on protein degradation has not been studied in human skeletal muscle.

When studying the regulation of muscle mass by environmental hypoxia, many confounding factors have to be taken into account. Long-term hypoxia at extreme altitude is known to reduce appetite and energy intake, to disturb the sleep cycle and to reduce physical activity, thereby indirectly favoring a catabolic state. It is thus difficult to determine whether the reduction of muscle mass observed after long-term exposure to hypoxia is due to decreased dietary protein ingestion, sleep deprivation, cold exposure, reduced physical activity or to other mechanisms of regulation. Most of the studies focusing on the regulation of protein metabolism by acute hypoxia have used an exercise paradigm. However, muscle contractile
activity per se is known to alter oxygen availability, thereby potentially indirectly affecting protein metabolism and adding one supplemental confounding factor. By simulating high altitude in a hypoxic facility, we were able to standardize the nutritional and the physical activity status of the subjects and to study more directly the acute effect of hypoxia on muscle protein metabolism. The purpose of the present study was thus to determine at a molecular level how acute environmental hypoxia regulates protein synthesis and breakdown in resting human skeletal muscle. Based on previous studies reporting a negative effect of hypoxia on muscle protein balance (Hoppeler et al. 1990, MacDougall et al. 1991, Mizuno et al. 2008), we hypothesized that hypoxia would repress the response to a breakfast by inhibiting key regulators of protein synthesis and by stimulating protein breakdown.
Materials and methods

Subjects

Fifteen healthy young men (age 21.3 ± 0.4 years; BMI 21.8 ± 0.45 kg·m⁻²) volunteered to participate in this study, which was approved by the local Ethics Committee (KU Leuven) and was in conformity with The Helsinki Declaration. The subjects were all physically active but they were not involved in any specific resistance training program during the period of the study. Subjects were asked to refrain from vigorous physical activity for 2 days, as well as to abstain from alcohol consumption the day before the experiments. Furthermore, they were not exposed for more than 7 days to an altitude above 1500 m within a period of 3 months preceding the start of the study. A medical check-up was done to detect any contraindications for exposure to extreme altitude and written consent was obtained from all subjects after explaining all potential risks of the study.

Study design

All subjects underwent 2 experimental sessions in a randomized cross-over designed order, with a 4-week interval period in between. In the normoxic trial (NOR) participants were exposed to normal atmospheric conditions (20.9 % O₂). In the hypoxic trial (HYP) participants inspired hypoxic air (~11 ± 0.1 % O₂).

Normoxic trial: The night before the experimental session subjects received a standardized dinner (58 % carbohydrates, 28 % fat and 14 % protein). After an overnight fast of at least 8 h, participants reported to the laboratory at 6:00 – 8:30 am where they received a standardized breakfast (65 % carbohydrates, 29 % fat and 6 % protein, total energy intake ranged from 489.0 kcal to 671.5 kcal according to the individual weight of the subjects). We chose to study the effect of environmental hypoxia after a light meal and not in the fasted state because we expected that hypoxia would create a state of anabolic resistance rather than impair basal
protein metabolism. After breakfast completion, a first near-infrared spectroscopy (NIRS) measurement (Hamamatsu NIRO 200, Louvain-la-Neuve, Belgium) of 20 min was performed to evaluate muscle oxygenation status via the tissue oxygenation index (TOI), which is a valid parameter to assess the fraction of O2-saturated tissue hemoglobin and myoglobin content (Ferrari et al. 2004). One pair of NIRS probes, consisting of 1 light emitter and 1 light detector, was attached on the belly of the right m. vastus lateralis in parallel with the long axis of the muscle. We used the right leg for the NIRS measurements because the left leg was used for muscle biopsies. Before positioning of the probes, the skin was shaved to exclude interaction of hair as a chromophore. Forty minutes after completion of the breakfast (T0), a first biopsy sample, with the needle pointing proximally, was taken from the left m. vastus lateralis under local anesthesia (1-2 ml Lidocaine) through a 5-mm incision in the skin. Immediately after, a blood sample was taken from an antecubital vein. After the baseline measurements, which were all done in normoxic conditions, subjects were transferred to the air-conditioned (~21°C) hypoxic facility (Sporting Edge, Leicestershire, UK), yet maintained at 20.9 % O2, where they rested in the seated position for 4 h while reading books or watching a movie. Immediately after entering the room, blood oxygen saturation (SpO2) was measured by pulsoximetry (Oximax Nellcor, UK). One hour after the first biopsy (T60), a second biopsy was taken through the same incision as the first, yet with the needle pointing distally. Furthermore, a venous blood sample was taken. At T220 a second 20-min NIRS measurement was performed. Finally, at T240 the last biopsy and blood sample were taken. The last biopsy was taken with the needle pointing distally and through a new incision in the skin 3 cm distally to the first incision.

Hypoxic trial: All experimental conditions in the hypoxic trial were similar to those in the normoxic trial except that the hypoxic facility was maintained at 11 % ambient O2 content (~5000 m altitude) instead of 20.9 %.
Western blot

Details of the immunoblotting procedures have been described previously (Deldicque et al. 2010b). Briefly, frozen muscle tissue (~20 mg) was homogenized 3 x 5 s with a Polytron mixer in ice-cold buffer (1:10, w/v) [50 mM Tris-HCl pH 7.0, 270 mM sucrose, 5 mM EGTA, 1 mM EDTA, 1 mM sodium orthovanadate, 50 mM glycerophosphate, 5 mM sodium pyrophosphate, 50 mM sodium fluoride, 1 mM DTT, 0.1 % Triton-X 100 and a complete protease inhibitor tablet (Roche Applied Science, Vilvoorde, Belgium)]. Homogenates were then centrifuged at 10000 g for 10 min at 4°C. The supernatant was collected and immediately stored at -80°C. The protein concentration was measured using the DC protein assay kid (Bio-Rad laboratories, Nazareth, Belgium). 30-80 µg of proteins were separated by SDS-PAGE (8-12 % gels) and transferred to PVDF membranes. Subsequently, membranes were blocked with 5 % non-fat milk for 1 h and afterwards incubated overnight (4°C) with the following antibodies (1:1000, Cell Signaling, Leiden, The Netherlands): phospho-Akt/PKB Ser\(^{473}\), Akt/PKB pan, total eEF2, phospho-S6K1 Thr\(^{389}\), total S6K1, phospho-4E-BP1 Thr\(^{37/46}\), total 4E-BP1, p-FoxO1 Thr\(^^{24}\)/FoxO3a Thr\(^^{32}\), total FoxO3a, p-eIF2α Ser\(^{51}\), total eIF2α, BiP, C/EBP homologous protein (CHOP) and HIF-1α. Horseradish peroxidase-conjugated anti-mouse (1:10000), anti-rabbit (1:5000) or anti-goat (1:20000) secondary antibodies (Sigma-Aldrich, Bornem, Belgium) were used for chemiluminescent detection of proteins. Membranes were scanned and quantified with Genetools and Genesnap softwares (Syngene, Cambridge, UK), respectively. Then, membranes were stripped and re-probed with the antibody for the total form of the respective protein to ascertain the relative amount of the phosphorylated protein compared to the total form throughout the whole experiment. The results are presented as the ratio protein of interest/eEF2 or as the ratio phosphorylated/total forms of the proteins when the phosphorylation status of the protein was measured. A value of 1.0 was assigned to the
mean value of the first sample (T0) in NOR and in HYP to which all other values from the respective condition were reported.

RNA extraction and reverse transcription

The method used for reverse transcription is described in detail elsewhere (Jamart et al. 2011, Vincent et al. 2010). Briefly, total RNA was extracted using TRIzol (Invitrogen, Vilvoorde, Belgium) from 20-25 mg of frozen muscle tissue. RNA quality and quantity were assessed by spectrophotometry with a Nanodrop (Thermo Scientific, Erembodegem, Belgium). One µg of RNA was reverse transcribed using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Gent, Belgium) according to manufacturer’s instructions.

Real-time qPCR analysis

A SYBR Green-based master mix (Applied Biosystems) was used for real-time PCR analyses using the ABI PRISM 7300 (Applied Biosystems). Real time PCR primers were designed for human MuRF-1, MAFbx, Bcl-2 adenovirus E1B 19 kDa protein-interacting protein 3 (Bnip3), activating transcription factor 4 (ATF4), spliced XBP1 (XBP1s), CHOP, HIF-1α and Redd1 (Table 1). Thermal cycling conditions consisted of 40 three-step cycles including denaturation of 30 s at 95°C, annealing of 30 s at 58°C and extension of 30 s at 72°C. All reactions were performed in duplicate. To compensate for variations in input RNA amounts and efficiency of reverse transcription, cyclophilin A (Cyclo A) and beta-2-microglobulin (β-2-MG) mRNA where quantified, and results were normalized to these values. These genes were chosen out of five normalization genes using the GeNorm applet according to the guidelines and theoretical framework described elsewhere (Vandesompele et al. 2002). A value of 1.0 was assigned to the mean value of the first sample (T0) in NOR and in HYP to which all other values from the respective condition were reported.
Enzymatic activity assays

Enzymatic activities were determined fluorometrically using specific substrates and specific inhibitors. Each sample was assessed in triplicate with one replicate containing a specific inhibitor to the activity studied. 26S β5 subunit proteasome activity was determined by adding 100 µM Suc-LLVY-AMC (Calbiochem) to 10 µg proteins in a reaction buffer containing 50 mM Tris, pH7.5, 1 mM EDTA, 150 mM NaCl, 5 mM MgCl₂, 0.5 mM DTT and 100 µM ATP, ± 20 µM epoxomicin. Cathepsin L activity was determined by adding 100 µM Z-Phe-Arg-AMC (Peptide Institute, Sandhausen, Germany) to 10 µg proteins in a buffer containing 100 mM Sodium Acetate, pH5.5, 1 mM EDTA, 1 mM DTT, ± 10 µM Cathepsin L Inhibitor I (Calbiochem, Overijse, Belgium). Calpain activity was determined by adding 200 µM Suc-LLVY-AMC (Calbiochem) to 10 µg proteins in a buffer containing 25 mM Tris, pH7.5, 0.5 mM EDTA, 5 mM CaCl₂, 75 mM NaCl, 0.025 mM DTT, ± 125 µM Calpain Inhibitor IV (Calbiochem). Fluorescence was monitored every 5 min for 105 min on a fluorometer (Fluostar Optima, BMG labtech, Sint-Pieters-Leeuw, Belgium) at an excitation and emission wavelength of 370 nm and 460 nm, respectively. Enzymatic activities were calculated as the difference of the slope of the accumulation of fluorescence as a function of time in the absence of inhibitor and presence of inhibitor.

Analysis of blood samples

Plasma insulin and cortisol were assayed by chemiluminescence using the Siemens DPC kit according to the instructions of the manufacturer. Blood glucose was measured with a glucocard x-meter (Arkray Inc. Kyoto, Japan).

Statistical analyses
A repeated measures ANOVA design was used to assess the statistical significance of differences between mean values over time and between conditions. When appropriate, Holm-Sidak pairwise multiple comparison test was used as post-hoc. A Pearson correlation coefficient was calculated between ∆SpO\textsubscript{2} and ∆TOI values. The threshold of significance was set at 0.05. Results are expressed as the means ± SEM.

Results

Blood oxygen saturation/Tissue oxygenation index

SpO\textsubscript{2}: Mean SpO\textsubscript{2} was markedly lower (-25 %) in HYP than in NOR during the whole experimental trial (p<0.05, Table 2). Individual decreases in HYP compared to NOR ranged from 12 to 36 %.

TOI: There were no differences in TOI between T0 and T240 in the NOR trial. Conversely, during the HYP trial TOI values were ~6 % lower at T240 than at T0 (p<0.05, Table 2). A correlation of r=0.451 was found between ∆SpO\textsubscript{2} [(SpO\textsubscript{2} \textsubscript{NOR T240} - SpO\textsubscript{2} \textsubscript{NOR T0})-(SpO\textsubscript{2} \textsubscript{HYP T240} - SpO\textsubscript{2} \textsubscript{HYP T0})] and ∆TOI [(TOI \textsubscript{NOR T240} - TOI \textsubscript{NOR T0})-(TOI \textsubscript{HYP T240} - TOI \textsubscript{HYP T0})] (p<0.05, data not shown).

Blood biochemistry

Insulin: Plasma insulin levels decreased throughout the experiment in both NOR and in HYP (p<0.05, Table 3) with a larger decrease observed in NOR, resulting in ~2 fold lower plasma insulin values in NOR compared to HYP at T240 (p<0.05).

Glucose: Blood glucose increased by 15% from T0 to T60 in NOR (p<0.05) but not in HYP, resulting in lower glucose concentrations in HYP compared to NOR at T60 (p<0.05). At 240, glucose values were similar to those at T0 in both NOR and HYP.
Cortisol: Plasma cortisol levels increased by about 30% between T0 and T240 in NOR and in HYP (p<0.05, Table 3). No differences were present between NOR and HYP.

Effect of environmental hypoxia on the regulation of protein synthesis

Phosphorylation of PKB at Ser\(^{473}\) decreased from T0 to T240 in NOR (p<0.05), but not in HYP (Figure 1A), resulting in a ~40% lower phosphorylation of PKB in NOR compared to HYP at T240 (p<0.05). Downstream of PKB and mTORC1, phosphorylation of S6K1 at Thr\(^{389}\) followed a similar phosphorylation pattern as PKB (Figure 1B), but the reduction in phosphorylation was more pronounced than for PKB in both NOR and HYP (p<0.05). Like phospho-PKB, phospho-S6K1 was lower in NOR compared to HYP at T240 (p<0.05). Phosphorylation of 4E-BP1 at Thr\(^{37/46}\) (Figure 1C), another downstream target of mTORC1, was not affected by any condition. We also measured the mRNA level of Redd1 as the latter is known to inhibit the mTOR pathway and to be up-regulated during hypoxia (Schwarzer et al. 2005). There was a trend to increase in the mRNA level of Redd1 during both experimental trials but this increase was only significant in HYP (T240, ~4-fold increase vs basal and ~2-fold increase vs NOR, p<0.05, Figure 1D).

Effect of environmental hypoxia on the regulation of protein breakdown

Activities of 26S proteasome β5, cathepsin L and calpain, which have been previously described as key proteins in muscle protein degradation (Jackman & Kandarian 2004), were assessed by fluorometric assays. Compared to T0, activity of 26S proteasome β5 increased by 19% in NOR at T240 (p<0.05, Figure 2A). No time effect was observed in HYP. Cathepsin L and calpain activities showed the same activation pattern, although the statistical threshold was not reached (time effect for cathepsin L, p=0.089, Figure 2B; time effect for calpain, p=0.056, Figure 2C). The activity of the proteasome is regulated by E3 ligases, the 2 best...
described of which in skeletal muscle are MAFbx and MuRF-1 (Bodine et al. 2001). Their expressions are under the control of a family of transcription factors called FoxO (Stitt et al. 2004). Phosphorylation of FoxO1/3a at Thr^{24/32} was higher at T60 and T240 than at basal in NOR (p<0.05), but not in HYP (Figure 2D). No differences between conditions were present. Neither MAFbx nor MuRF-1 mRNA expression followed the phosphorylation of FoxO1/3a. The mRNA levels of MuRF-1 was upregulated by ~15 % at T240 in HYP (p<0.05, Figure 2E). MAFbx mRNA content decreased throughout the experiment in both NOR and HYP. However, the decrease was larger in HYP compared to NOR (p<0.05, Figure 2F). Bnip 3 mRNA expression, a marker of the autophagy/lysosome pathway (Tracy et al. 2007), was not modified by the experimental conditions (Figure 2G).

Effect of environmental hypoxia on the unfolded protein response

Activation of the unfolded protein response, triggered by endoplasmic reticulum stress, was assessed by measuring several markers previously described (Deldicque et al. 2010a). ATF4 and spliced XBP1 mRNA contents increased at T240 compared to T0 but only in HYP (by 30 % for ATF4 and by 25 % for XBP1s, p<0.05, Figure 3A and B). Moreover, the mRNA expression of ATF4 was ~30 % higher in HYP compared to NOR at T240 (p<0.05, Figure 3A). BiP expression increased throughout the experiment in both conditions, but this increase was only significant in NOR at T240 (p<0.05, Figure 3E). CHOP protein expression tended to display a time effect (p=0.075) with a tendency to higher CHOP expression in HYP compared to NOR at T60 (p=0.055, Figure 3D). No effects were found in CHOP mRNA (Figure 3C) or eIF2α phosphorylation at Ser^{51} (Figure 3F).

Hypoxia inducible factor-1 and its downstream targets
The acute bout of hypoxia did not alter HIF-1α either at the mRNA level or at the protein level (Figure 4), neither did it activate the transcriptional activity of HIF-1α. To test the latter, we measured the expression of several genes known to be regulated by HIF-1α. Neither GLUT-1 nor GAPDH mRNA levels were modified in HYP (data not shown). VEGF-A mRNA was the only one to increase in HYP. At T240, VEGF-A mRNA content was ~1.5 fold higher in HYP compared to NOR (p<0.05, Figure 4B). We tried to quantify HIF-1α at the protein level. However, the basal expression in normoxia was barely detectable and hypoxia did not increase its expression (Figure 4C). To ensure that our antibody was able to detect modifications in the protein levels, we treated human umbilical vein endothelial cells (HUVEC) with 1 mM dimethyloxaloylglycine (DMOG), an inhibitor of the prolylhydroxylases to provoke accumulation of HIF-1α in the cell and 10 mM MG132, an inhibitor of the proteasome to block the degradation of HIF-1α. We were able to reproduce the results presented in the datasheet of the antibody (Cell Signaling), i.e. no increase of HIF-1α in MG132-treated cells but a large increase in DMOG-treated cells, confirming thereby that if there had been any increase in muscle HIF-1α expression, we should have detected it in our conditions. All together our results show that the muscle HIF-1α pathway was not activated by acute environmental hypoxia and thus that the effects observed in the present study are probably HIF-1α-independent. However we did not separate membrane and cytosolic cell fractions. We can thus not rule out a possible translocation of HIF-1α to the cell nucleus. If this was the case, it did not result in higher transcriptional activity as measured by unchanged levels of mRNA known to be upregulated by HIF-1α.
Discussion

Hypoxia-induced muscle wasting has been previously described as a consequence of high altitude (Hoppeler et al. 1990, MacDougall et al. 1991, Mizuno et al. 2008) and several diseases (Grocott et al. 2007, Wust & Degens 2007), but the molecular mechanisms behind this loss of muscle mass are far to be elucidated. Contrary to our hypothesis and to previous reports on long-term environmental hypoxia, we show in the present study that acute and severe hypoxia alters the mTORC1 pathway in a way that is theoretically favorable for muscle protein accretion.

Up-regulation of the mTORC1 pathway by environmental hypoxia

Whereas it is generally accepted that hypoxia induces muscle wasting, there is clearly a lack of data describing the molecular mechanisms in human. Muscle wasting reflects a decrease in protein synthesis, an increase in protein breakdown or both at the same time. Only very few studies have attempted to clarify the molecular mechanisms by which acute or more prolonged environmental hypoxia regulates muscle mass in human. A slight decrease in total mTORC1 was found after 7-9 day sojourn at 4559 m (Vigano et al. 2008). In another recent study, subjects showed a blunted exercise-induced increase in muscle protein synthesis when breathing hypoxic air (12 % O₂) compared to normoxic air (Etheridge et al. 2011). Hypoxia did not modify phosphorylation of S6K1 or expression of Redd1 whether at rest or after exercise. In another study in rat soleus muscle, Redd1 expression was markedly increased and the PKB/mTORC1 pathway was concomitantly down-regulated after a 3-week exposure to 6300 m. Furthermore in hypoxemic patients suffering from chronic obstructive pulmonary disease, a substantial decrease in phosphorylation of several intermediates of the PKB/mTORC1 pathway was reported (Favier et al. 2010). In contrast to the aforementioned studies, our data show that PKB and S6K1 displayed a higher phosphorylation state after 4 h exposure to hypoxia following a meal. All biopsies were taken after a light meal explaining
why PKB and S6K1 phosphorylation decreased between the first and the third biopsy in normoxia and hypoxia. In hypoxia, however, the return to basal phosphorylation states was slowed down for both proteins. When subjects remained fasted for 3.5 h in hypoxia, S6K1 phosphorylation was not changed compared to pre-exposure (Etheridge et al. 2011), indicating that short-term hypoxia does not modify basal phosphorylation of S6K1. Based on our data, it is however likely that environmental hypoxia alters the response of S6K1 and PKB to a meal. According to previous in vitro studies (Koritzinsky et al. 2006), we could have expected a down-regulation of 4E-BP1 phosphorylation due to hypoxia. However, such increase did not occur. We choose to use an antibody specific to Thr37 and Thr46, the sites phosphorylated by mTORC1 as the aim of the study was to focus on the mTORC1 pathway. However Thr37 and Thr46 are also known to be less sensitive to serum and other growth factors than other sites of the protein, for example Thr65 and Thr70 (Gingras et al. 1999). We can thus not rule out that other sites of 4E-BP1, more sensitive to changes in insulin concentrations in vivo, reacted the same way as PKB and S6K1. However, it is difficult to screen each of them as six different sites (Thr 37, Thr 46, Ser 65, Thr 70, Ser 83 and Ser 112) have been discovered up to now (Gingras et al. 2001).

Redd-1 expression is regulated by HIF-1α-independent mechanisms

Redd-1 was originally discovered in cell cultures as a hypoxic-responsive gene (Shoshani et al. 2002) and since then many studies have confirmed that Redd-1 is a direct target of the transcription factor HIF-1α (Schwarzer et al. 2005). It has also been shown to act as an inhibitor of mTORC1 through regulation of 14-3-3 protein shuttling (DeYoung et al. 2008). Here, we show a clear elevation of Redd-1 mRNA after 4 h of exposure to hypoxia against the face of constant HIF-1α. We did not assessed Redd-1 at the protein level but it has previously been shown that the mRNA and protein expressions follow the same regulation pattern (Frost et al. 2009). Endoplasmic reticulum stress and its downstream adaptive response, the
unfolded protein response, have been proposed as another HIF-1α-independent mechanism by which Redd-1 can be up-regulated (Whitney et al. 2009). To test this hypothesis, we measured ATF4 and the active (spliced) form of XBP1 at the mRNA level and we found a higher expression of both genes after exposure to hypoxia, indeed. The unfolded protein response could also have contributed to the increase in VEGF-A mRNA, usually attributed to HIF-1α, that we observed at the end of the hypoxic trial. IRE1α and XBP1s have previously been reported to induce VEGF-A mRNA expression (Drogat et al. 2007). All together, our data show that PKB and S6K1 phosphorylation remained higher in hypoxia potentially due to higher plasma insulin concentrations and despite an increase in Redd-1 mRNA, a well-known inhibitor of the PKB/mTOR pathway. However, it is highly probable that other untested factors also contributed to the regulation of PKB and S6K1.

Environmental hypoxia affects protein breakdown to a minor extent

As mentioned above, protein breakdown has often been understudied in studies dealing with hypoxia. Two studies performed on animal models have directly investigated the effect of hypoxia on the different proteolytic pathways. Favier et al. did not find any effect of chronic hypoxia (3 weeks, 6300m) on any component of the proteasomal, lysosomal and calcium-dependent systems in rat skeletal muscle (Favier et al. 2010). On the contrary, Chaudhary et al. reported that chronic hypoxia (2 weeks, 7620m) induced muscle atrophy and that the proteasomal and calpain systems were activated at the same time (Chaudhary et al. 2012). Based on those 2 studies, a clear-cut conclusion is thus difficult to draw. Both used very similar methodologies except the strain (Whistar (Favier et al. 2010) vs Sprague-Dawley males (Chaudhary et al. 2012)), the altitude and the age of the animals. The latter issue could explain why Chaudhary, using young rats, found an increase in protein breakdown after exposure to hypoxia as protein turnover is known to be higher in younger rats than in adult rats. Growing rats are thus more sensitive to factors affecting protein synthesis and/or protein
breakdown. Moreover, in the study of Chaudhary, the altitude was 1000m higher than in the study of Favier, which has probably favored the catabolic state of the animals. In the present study, we did not find any change in either proteasome, or cathepsin, or calpain activities in adult subjects. This is the first time that protease activities are measured in skeletal muscle of subjects exposed to hypoxia. Based on our results, hypoxia seems to affect markers of protein synthesis to a larger extent than those of protein breakdown. Interestingly we found that independently of the hypoxic response, the activity of the 3 main proteolytic systems in skeletal muscle was higher a few hours after a light meal in normoxia. This higher activity could not be explained by a decreased phosphorylation of FoxO1/3a, a master regulator of protein breakdown, as contrary to what expected its phosphorylation increased throughout the normoxic trial. Although the activities of the proteasome, cathepsin and calpain systems were not modified, we hypothesized that short-term hypoxia could have altered some key regulators of these pathways. This would prepare the different machineries to become more activated in case of prolonged exposition to hypoxia. Several well-known markers of the ubiquitin-proteasome pathway (MuRF-1 and MAFbx mRNA) (Bodine et al. 2001), the autophagy-lysosome (Bnip3 mRNA) (Tracy et al. 2007) and the ER stress-associated degradation systems (CHOP mRNA and protein) (Oyadomari & Mori 2004) were quantified. Only MuRF-1 and MAFbx mRNA were modified after 4 h hypoxia and these changes occurred in an opposite way, MuRF-1 level being up-regulated and MAFbx down-regulated. Those 2 muscle-specific ligases have originally been thought to play a pivotal role in the regulation of the ubiquitin-proteasome pathway (Bodine et al. 2001). Since then, their role has been revised somewhat downwards and it is not uncommon to see a specific regulation of each factor (Greenhaff et al. 2008, Jamart et al. 2012). We could have expected that the higher insulin concentration induced by hypoxia would have affected protein breakdown to a larger extent as insulin is known to affect protein breakdown rather than protein synthesis in
skeletal muscle (Greenhaff et al. 2008). However it was not the case in the present study. It is possible that exposure to hypoxia modulates the response of protein breakdown to insulin usually observed in normoxia but this needs further investigation.

Acute environmental hypoxia does not activate HIF-1α in skeletal muscle

Acute exposure to 11 % O₂ resulted in a large decrease in SpO₂ in all subjects. Interestingly, individual SpO₂ drops ranged from 12 to 36 %, indicating a high variability in hypoxic adaptation between subjects. Irrespective of the large decrease in SpO₂, TOI only decreased by ~6 % in hypoxia, which is in line with previous studies (Martin et al. 2009). Even though oxygen supply to skeletal muscle is drastically reduced, muscle oxygenation seems to stay rather stable under severe environmental hypoxia, probably because of the low muscle oxygen consumption at rest and the high affinity of myoglobin for oxygen (Ordway & Garry 2004). It is noteworthy that, during exercise, TOI decreases much more severely than the 6 % presented here not only in hypoxia but in normoxia as well (Martin et al. 2009, Masschelein et al. 2012). This large decrease in tissue oxygenation induced by exercise is accompanied by an up-regulation of HIF-1α (Ameln et al. 2005) whereas in our resting conditions we did not measure any change of the latter whether at the protein or at the mRNA level. All the observations we made in the present study are thus independent of HIF-1α, which is not surprising as muscle oxygenation was barely affected. The latter suggests that other factors, that could be systemic, are involved in the activation of intramuscular signaling. Two likely candidates are insulin and cortisol, previously shown to be altered during hypoxic exposure (Larsen et al. 1997). Whereas plasma cortisol concentration was not modified by hypoxia, insulin returned more slowly to basal after a standardized breakfast in the hypoxic trial. Insulin concentration was 2 fold higher at the end of the exposure to environmental hypoxia and could partially explain several observations we made at this time, i.e. higher phosphorylation of PKB and S6K1. The higher insulin concentration in the group exposed to
hypoxia was not due to higher blood glucose concentrations. Glucose is a well-known stimulator of insulin secretion but the 4 h exposure to hypoxia did not increase glucose blood level compared to normoxia. On the contrary, hypoxia tended to reduce blood glucose levels. Although we could not measure plasma catecholamines concentrations due to a lack of sample, it is possible that adrenaline contributed to the increase in insulin as adrenaline increases at high altitude (Mazzeo et al. 1994) and it regulates insulin secretion by the pancreas (Lacey et al. 1993). It is also possible that adrenaline also directly altered protein metabolism as it has been shown to increase protein synthesis (Navegantes et al. 2004) and to repress proteolysis in rat skeletal muscle (Navegantes et al. 2000).

Limitations of the present study

The major limitation of the present study is not having taken a biopsy before the breakfast. The lack of sample at this time point does not allow drawing any conclusion about the effect of breakfast itself. However, this was not the purpose of the present study as the effect of feeding on protein synthesis and breakdown is already well-known (Atherton & Smith 2012). We also have to acknowledge that we did not directly measure protein synthesis and protein breakdown but we quantified several markers of those processes. Finally, the physiological challenges experienced by the human body at high altitude are far more complex than those experienced with the normobaric model used in this study. Therefore the results should be interpreted with caution when extrapolating to muscle protein synthesis and protein breakdown at high altitude.

Conclusion

In conclusion, contrary to our original hypothesis and despite an increase in the mRNA level of Redd1, an inhibitor of the mTOR pathway, short-term acute hypoxia induces a higher response of PKB and S6K1 4h after a meal that could at least partially been explained by an
increase in plasma insulin concentration. Further investigation will be required to study the repeated response to a standardized meal during chronic hypoxia which could differ from the one observed in the present study. Long-term exposure to hypoxia could create a state of anabolic resistance that we did not observe on a short-term.
Acknowledgements

The authors would like to thank Monique Ramaekers for technical assistance, Katrien De Bock for providing cell culture samples and the volunteers who participated to the present study. This work was supported by grants to PH from the "Onderzoeksraad KU Leuven" (OT09/33) and from the FWO Vlaanderen (G.0706.09) and to MF from the "Fonds de la Recherche Scientifique Médicale" (FRSM 3.4514.) and from the "Fonds Spéciaux de Recherche Université catholique de Louvain".

Conflict of interest

The authors do not have any conflicts of interest.
References

Cam, H., Easton, J. B., High, A. & Houghton, P. J. 2010. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. *Mol. Cell* 40, 509-520.

Tables

Table 1

Table 1. Primer sequences

<table>
<thead>
<tr>
<th></th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATF4</td>
<td>CCA ACA ACA GCA AGG AGG ATG</td>
<td>GTC ATCCAA CGT GTG CAG AAG G</td>
</tr>
<tr>
<td>Bnip3</td>
<td>CTG AAA CAG ATA CCC ATA GCA TT</td>
<td>CCG ACT TGA CCA ATC CCA</td>
</tr>
<tr>
<td>CHOP</td>
<td>CTG GCT TGG CTG ACT GAG GAG</td>
<td>CGG GCT GGG GAA TGA CC</td>
</tr>
<tr>
<td>HIF-1α</td>
<td>GCC CCA GAT TCA GGA TCA GA</td>
<td>TGG GAC TAT TAG GCT CAG GTG AAC</td>
</tr>
<tr>
<td>Redd1</td>
<td>TGA GGC ACG GAG TGG GAA</td>
<td>CAG CTC GAA GTC GGG CAA</td>
</tr>
<tr>
<td>MuRF-1</td>
<td>AAA CAG GAG TGC TCC AGT CGG</td>
<td>CGC CAC CAG CAT GGA GAT ACA</td>
</tr>
<tr>
<td>MAFbx</td>
<td>CCC AAG GAA AGA GCA GTA TGG AGA</td>
<td>GGG TGA AAG TGA AAC GGA GCA</td>
</tr>
<tr>
<td>XBP1s</td>
<td>CCG CAG CAG GTG CAG G</td>
<td>GAG TCA ATA CCG CCA GAA TCC A</td>
</tr>
<tr>
<td>CycloA</td>
<td>CTT CAT CCT AAA GCA TAC GGG TC</td>
<td>TGC CAT CCA ACC ACT CAG TCT</td>
</tr>
<tr>
<td>β-2-MG</td>
<td>ATG AGT ATG CCT GCC GTG TGA</td>
<td>GGC ATC TTC AAA CCT CCA TG</td>
</tr>
</tbody>
</table>

ATF4, activating transcription factor 4; Bnip3, Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3; CHOP, C/EBP homologous protein; HIF-1α, hypoxia-inducible factor-1 alpha; Redd1, regulated in development and DNA damage responses 1; MuRF-1, muscle ring finger protein-1; MAFbx, muscle atrophy F box; XBP1s, spliced X-box binding protein 1; CycloA, cyclophilin A; β-2-MG, beta-2-microglobulin.
Table 2

<table>
<thead>
<tr>
<th></th>
<th>Mean during whole experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO₂ (%)</td>
<td></td>
</tr>
<tr>
<td>NOR</td>
<td>99.0 ± 0.2</td>
</tr>
<tr>
<td>HYP</td>
<td>75.5 ± 2.0†</td>
</tr>
<tr>
<td>TOI (%)</td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td></td>
</tr>
<tr>
<td>NOR</td>
<td>69.7 ± 1.5</td>
</tr>
<tr>
<td>HYP</td>
<td>70.8 ± 2.0</td>
</tr>
<tr>
<td>T240</td>
<td></td>
</tr>
<tr>
<td>NOR</td>
<td>68.4 ± 1.2</td>
</tr>
<tr>
<td>HYP</td>
<td>65.7 ± 1.4*</td>
</tr>
</tbody>
</table>

Mean arterial oxygen saturation (SpO₂) during the whole experiment and tissue oxygenation index (TOI) at the start (T0) and at the end (T240) of the experimental session in either normoxia (NOR) or hypoxia (HYP). Values are means ± SEM (n=15). †p<0.05 vs NOR; *p<0.05 vs T0.
Table 3

Table 3. Plasma insulin, blood glucose and plasma cortisol concentrations

<table>
<thead>
<tr>
<th></th>
<th>T0</th>
<th>T60</th>
<th>T240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin (µU·ml⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOR</td>
<td>27.3 ± 3.6</td>
<td>20.9 ± 3.6</td>
<td>5.9 ± 1.2*‡</td>
</tr>
<tr>
<td>HYP</td>
<td>31.5 ± 4.3</td>
<td>17.9 ± 3.3*</td>
<td>13.4 ± 2.5*‡</td>
</tr>
<tr>
<td>Glucose (mg·dl⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOR</td>
<td>94.2 ± 2.5</td>
<td>110.1 ± 5.4*</td>
<td>81.6 ± 2.0‡</td>
</tr>
<tr>
<td>HYP</td>
<td>86.0 ± 4.0</td>
<td>89.5 ± 4.7‡</td>
<td>87.7 ± 2.8</td>
</tr>
<tr>
<td>Cortisol (nM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOR</td>
<td>257.8 ± 13.1</td>
<td>305.9 ± 20.5</td>
<td>337.9 ± 16.7*</td>
</tr>
<tr>
<td>HYP</td>
<td>234.9 ± 14.9</td>
<td>310.6 ± 24.3*</td>
<td>325.9 ± 29.9*</td>
</tr>
</tbody>
</table>

Plasma insulin, blood glucose and plasma cortisol concentrations at basal (T0), after 1h (T60) and after 4h (T240) in normoxia (NOR) or in hypoxia (HYP). Values are means ± SEM (n=15). *p<0.05 vs T0; ‡p<0.05 vs T60; †p<0.05 vs NOR.
Figure captions

Figure 1. *Effect of hypoxia on protein synthesis markers and regulators.* (a) PKB, (b) S6K1, (c) 4E-BP1 phosphorylation and (d) Redd1 mRNA level at basal (0), after 1h (60) and after 4h (240) in normoxia (NOR) or in hypoxia (HYP). (e) Representative blots. Data shown are expressed as means ± SEM (n=15). *p<0.05 vs T0; ‡p<0.05 vs T60; ‡‡p<0.05 vs NOR.

Figure 2. *Effect of hypoxia on protein breakdown markers and regulators.* (a) 26S β5 proteasome activity, (b) cathepsin L activity, (c) calpain activity, (d) FoxO1/3a phosphorylation, (e) MuRF-1, (f) MAFbx and (g) Bnip3 mRNA levels at basal (0), after 1h (60) and after 4h (240) in normoxia (NOR) or in hypoxia (HYP). (h) Representative blots. Data shown are expressed as means ± SEM (n=15). *p<0.05 vs T0; a p<0.1 vs T0; ‡p<0.05 vs NOR.

Figure 3. *Effect of acute hypoxia on markers of the unfolded protein response.* (a) ATF4, (b) XBP1s and (c) CHOP mRNA levels, (d) CHOP and (e) BiP protein expressions and (f) eIF2α phosphorylation at basal (0), after 1h (60) and after 4h (240) in normoxia (NOR) or in hypoxia (HYP). (g) Representative blots. Data shown are expressed as means ± SEM (n=15). *p<0.05 vs T0; ‡p<0.05 vs NOR.

Figure 4. *Effect of acute hypoxia on the hypoxia-inducible factor pathway.* (a) HIF-1α mRNA level (b) VEGF-A mRNA level at basal (0), after 1h (60) and after 4h (240) in normoxia (NOR) or in hypoxia (HYP). (c) Representative western blot for HIF-1α from one subject and the different controls we used on HUVEC cell cultures (see material and methods for further details). Data shown are expressed as means ± SEM (n=15). *p<0.05 vs T0; ฿p<0.05 vs T60; ‡‡p<0.05 vs NOR.
Physiological relevance

Hypoxia-induced muscle wasting has been observed in several environmental (such as altitude) and pathological (such as lung diseases) conditions. However, the molecular mechanisms behind this loss of muscle mass are far from elucidated, certainly in vivo. To the best of our knowledge, no study has previously reported the effect of hypoxia on protein degradation in human skeletal muscle and protein synthesis has only been scarcely studied at a molecular level. The present paper reports new mechanistic explanations about the regulation of muscle protein metabolism which is not only important for hikers who lose muscle mass during ascent but also for patients suffering from lung diseases or anemia who present reduced muscle mass.
Figure 1

(a) PKB Ser\(^{473}\) phosphorylation (fold basal) over time.

(b) S6K1 Thr\(^{389}\) phosphorylation (fold basal) over time.

(c) 4E-BP1 Thr\(^{37/46}\) phosphorylation (fold basal) over time.

(d) Redd1 mRNA (fold basal) over time.

(e) Western blot showing phosphorylation levels of PKB, S6K1, and 4E-BP1 under normal (NOR) and hypoxic (HYP) conditions.
Figure 2

- (a) 26S β proteasome activity (fold basal)
- (b) Calpain activity (fold basal)
- (c) Calpain activity (fold basal)
- (d) 26S β proteasome activity (fold basal)
- (e) MafBx mRNA (fold basal)
- (f) BNIP3 mRNA (fold basal)
- (g) BNIP3 mRNA (fold basal)
- (h) p-FoxO1/3a Thr^{24/32} phosphorylation (fold basal)

* Indicates significant differences compared to the control group.
† Indicates significant differences compared to the experimental group.

Graphs (a) to (g) show the expression of various proteins and mRNA levels over time in response to different treatments. The graphs indicate changes in activity or expression levels at Time 0, 60, and 240 minutes. Graph (h) provides a visual representation of the phosphorylation state of p-FoxO1/3a Thr^{24/32} in nor (NOR) and hypoxia (HYP) conditions at different time points.
Figure 3

(a) ATF4 mRNA (fold basal)
(b) XBP1s mRNA (fold basal)
(c) CHOP mRNA (fold basal)
(d) CHOP protein (fold basal)
(e) BiP protein (fold basal)
(f) eIF2α Ser51 phosphorylation (fold basal)
(g) NOR HYP

BiP
CHOP
eEF2
p-eIF2α Ser51
eIF2α
Figure 4

(a) HIF-1α mRNA (fold basal) vs Time (min)

(b) VEGF-A mRNA (fold basal) vs Time (min)

(c) Western blot analysis of NOR and HYP samples with protein concentrations of 10µg and 20µg.