"The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis"

Deldicque, Louise; Cani, Patrice D.; Philp, Andrew; Raymackers, Jean-Marc; Meakin, Paul J; Ashford, Michael L J; Delzenne, Nathalie M.; Francaux, Marc; Baar, Keith

Abstract
High-fat diets are known to decrease muscle protein synthesis, the adaptation to overload, and insulin sensitivity. Conditions that disrupt endoplasmic reticulum (ER) homeostasis lead to the activation of the unfolded protein response (UPR) that is associated with decreases in protein synthesis, chronic inflammation, and insulin resistance. The purpose of the present study was to establish whether ER stress is induced by a high-fat diet in skeletal muscle and whether ER stress can decrease mTORC1 activity and protein synthesis in muscle cells. Two independent protocols of high-fat feeding activated the UPR in mice. In the first study, mice consuming a high-fat diet containing 70% fat and <1% carbohydrates for 6 wk showed higher markers of the UPR (BiP, IRE1α, and MBTPS2) in the soleus and in the tibialis anterior muscles and ATF4 in the tibialis anterior (P < 0.05). In the second study, a 20-wk high-fat diet containing 46% fat and 36% carbohydrates also increased BiP, IRE1α, and ph...

Document type: Article de périodique (Journal article)

Référence bibliographique

DOI: 10.1152/ajpendo.00038.2010
The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis
Louise Deldicque, Patrice D. Cani, Andrew Philp, Jean-Marc Raymackers, Paul J. Meakin, Michael L. J. Ashford, Nathalie M. Delzenne, Marc Francaux and Keith Baar

You might find this additional info useful...

Supplemental material for this article can be found at:
http://ajpendo.physiology.org/content/suppl/2010/05/26/ajpendo.00038.2010.DC1.html
http://ajpendo.physiology.org/content/suppl/2010/08/05/ajpendo.00038.2010.DC2.html

This article cites 54 articles, 28 of which can be accessed free at:
http://ajpendo.physiology.org/content/299/5/E695.full.html#ref-list-1

This article has been cited by 1 other HighWire hosted articles
Deletion of Nck1 attenuates hepatic ER stress signaling and improves glucose tolerance and insulin signaling in liver of obese mice
Mathieu Latreille, Marie-Kristine Laberge, Geneviève Bourret, Lama Yamani and Louise Larose
[Abstract] [Full Text] [PDF]

Updated information and services including high resolution figures, can be found at:
http://ajpendo.physiology.org/content/299/5/E695.full.html

Additional material and information about AJP - Endocrinology and Metabolism can be found at:
http://www.the-aps.org/publications/ajpendo

This information is current as of May 2, 2011.
The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis

Louise Deldicque,§ Patrice D. Cani,§ Andrew Philp,§ Jean-Marc Raymackers,§ Paul J. Meakin,§ Michael L. J. Ashford,§ Nathalie M. Delzenne,§ Marc Francaux,§ and Keith Baar§

1Institute of Neurosciences, Research Group in Muscle Exercise and Physiology, UCLouvain, Louvain-la-Neuve; 2Louvain Drug Research Institute, Unité de pharmacocinétique, métabolisme, nutrition et toxicologie, UCLouvain, Brussels, Belgium; 3Division of Molecular Physiology, College of Life Sciences, and 4Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom

Submitted 14 January 2010; accepted in final form 24 May 2010

Deldicque L, Cani PD, Philp A, Raymackers JM, Meakin PJ, Ashford ML, Delzenne NM, Francaux M, Baar K. The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis. Am J Physiol Endocrinol Metab 299: E695–E705, 2010. First published May 25, 2010; doi:10.1152/ajpendo.00038.2010.—High-fat diets are known to decrease muscle protein synthesis, the adaptation to overload, and insulin sensitivity. Conditions that disrupt endoplasmic reticulum (ER) homeostasis lead to the activation of the unfolded protein response (UPR) that is associated with decreases in protein synthesis, chronic inflammation, and insulin resistance. The purpose of the present study was to establish whether ER stress is induced by a high-fat diet in skeletal muscle and whether ER stress can decrease mTORC1 activity and protein synthesis in muscle cells. Two independent protocols of high-fat feeding activated the UPR in mice. In the first study, mice consuming a high-fat diet containing 70% fat and <1% carbohydrates for 6 wk showed higher markers of the UPR (BiP, IRE1α, and MBTPS2) in the soleus and in the tibialis anterior muscles and ATF4 in the tibialis anterior (P < 0.05). In the second study, a 20-wk high-fat diet containing 46% fat and 36% carbohydrates also increased BiP, IRE1α, and phospho-PERK protein and the expression of ATF4, CHOP, and both the spliced and unspliced forms of XBP1 in the plantar flexors (P < 0.05). In C2C12 muscle cells, tunicamycin, thapsigargin, and palmitic acid all increased UPR markers and decreased phosphorylation of S6K1 (P < 0.05). Collectively, these data show that a high-fat diet activates the UPR in mouse skeletal muscle in vivo. In addition, in vitro studies indicate that palmitic acid, and other well-known ER stress inducers, triggered the UPR in myogenic cells and led to a decrease in protein synthesis and mTORC1 activity.

endoplasmic reticulum stress; binding protein; X box binding protein-1; ribosomal protein S6 kinase; protein synthesis

A HIGH-FAT DIET IS KNOWN to affect the physiology of skeletal muscle: preventing skeletal muscle hypertrophy in response to loading (39). It is possible that, over time, decreased load-induced muscle protein synthesis would result in a decrease in lean body mass and, as a result, a decrease in the capacity to take up and oxidize glucose, contributing to insulin resistance and the metabolic syndrome. Even though some hypotheses have been formulated to explain how a high-fat diet could affect muscle protein synthesis, no definitive mechanism has been presented. What is clear is that following a high-fat diet there is a decrease in ribosomal biogenesis and in the activation of mammalian target of rapamycin complex 1 (mTORC1) in response to overload (39).

The endoplasmic reticulum (ER) is where folding and post-translational modifications of proteins occur. Certain conditions, such as high lipids, glucose deprivation, or increased synthesis of secretory proteins disrupt ER homeostasis and lead to the accumulation of unfolded or misfolded proteins within the ER lumen (54). To cope with this, cells activate the unfolded protein response (UPR), a series of events that serve to restore ER function (21, 23, 35, 48). The UPR has three main effectors: ATF6 (activating transcription factor 6), IRE1α (inositol-requiring enzyme 1α), and PERK (protein kinase R-like ER protein kinase). In the basal (inactive) state, each of these factors associates with the protein chaperone BiP/GRP78 (binding protein/glucose-regulated protein-78), a member of the Hsp70 (heat shock protein-70) family. Upon accumulation of unfolded/misfolded proteins, ATF6, IRE1α, and PERK are released from BiP/GRP78 and become activated. The downstream effect of ATF6, IRE1α, and PERK release is the induction of genes, such as XBP1 (X box binding protein-1), CHOP [CCAAT/enhancer binding protein (C/EBP) homologous protein], and ATF4 (activating transcription factor 4), which lead to a decrease in protein synthesis and increase in protein folding capacity. When the unfolded protein response fails, the result is cell death, mostly in the form of apoptosis (19). Activation of the PERK-eIF2α-ATF4, the IRE1α-XBP1, and the ATF6 pathways upregulates the transcription factor CHOP, which in turn downregulates Bcl-2 (B-cell leukemia/lymphoma 2) expression, resulting in mitochondrial cytochrome c release (19). In addition, IRE1α-ASK1/apoptosis signal-regulating kinase-1-JNK signaling activates the proapoptotic Bcl-2 family member BIM while inhibiting the antia apoptotic protein Bcl-2 (49). IRE1α activation also triggers the recruitment of caspase-12, a protein with homology to the caspase family of cysteine proteases involved in apoptosis and inflammatory cytokine processing (50).

Whereas ER stress has been widely studied in pancreatic islets, liver, and adipose tissue, where it has been proposed to be involved in the pathogenesis of diabetes (7, 10, 15, 37, 41), much less information exists about ER stress in skeletal muscle. In muscle, ER stress has been observed in myopathies such as myotonic dystrophy type 1 (13) and sporadic inclusion body myositis (26, 47). In addition, ER stress can be triggered by proinflammatory cytokines and lipids (33, 53). Since both of these factors are increased in obesity and diabetes, it is possible that ER stress may be activated in pathological metabolic conditions, leading to muscle wasting and further dysfunction.

Address for reprint requests and other correspondence: K. Baar, Dept. of Neurobiology, Physiology and Behavior, Univ. of California, Davis, One Shields Ave., 181 Briggs Hall, Davis, CA 95616 (e-mail: kbaar@ucdavis.edu).

http://www.ajpendo.org 0193-1849/10 Copyright © 2010 the American Physiological Society
(32). In fact, a recent study in diabetic patients indicated that markers of the UPR were increased in cells isolated from muscle biopsies and cultured in the presence of palmitate (34), suggesting that ER stress is present in vivo, although this has yet to be shown. Even though there are suggestions that ER stress is induced in vivo, at least one study reported that ER stress markers were not altered in skeletal muscle of obese and high-fat-fed animals compared with controls (29).

Due to the important role of skeletal muscle in whole body metabolic regulation and the possibility that ER stress can regulate protein synthesis, muscle size, and insulin resistance, we sought to establish whether ER stress was induced by a high-fat diet and whether ER stress would decrease protein synthesis and mTORC1 activity. Therefore, we first tested whether the unfolded protein response was increased in mouse skeletal muscle after two different high-fat diet protocols. Second, we determined the effect of agents known to induce ER stress (9, 29, 36, 40, 46), such as tunicamycin, thapsigargin and palmitic acid on mTORC1 activity and protein synthesis in C2C12 muscle cells.

MATERIALS AND METHODS

Protocols

Cell cultures. C2C12 murine skeletal muscle myoblasts (ATCC) were seeded in 150-mm-diameter culture dishes and grown in Dulbecco’s modified Eagle medium (DMEM, Life Technologies) supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin (5,000 U/5,000 μg/ml). Cells were then plated in six-well plates until reaching 90% confluence. At that time, the proliferation medium was replaced with a differentiation medium containing 2% horse serum and 1% penicillin-streptomycin (5,000 U/5,000 μg/ml). After 96 h of differentiation, tunicamycin (TN, 1 μg/ml), thapsigargin (TG, 200 nM), or palmitic acid (PA, 1 mM) plus 2% BSA was added for 17 h. TN and TG are well-documented chemical inducers of ER stress by blocking N-glycosylation and calcium entry into the ER, respectively, and were used as positive controls. At the end of the incubation period, cells were harvested, and cell lysates were immediately frozen at −80°C for subsequent analyses. All experiments were performed three times in triplicates except the dose-response curves to PA.

Animal Studies. STUDY 1. Eight-week-old female C57BL/6J mice (Laboratory of Experimental Surgery, UCLouvain, Belgium) were housed in groups of seven per cage at 22°C on a 12:12-h light-dark cycle and were given free access to diet and water. After 1 wk of acclimation, mice were randomly assigned to either a control group (Ctrl-2, n = 12) or a high-fat diet group (HFD-2, n = 19). The control group ate standard chow (RM1, Special Diets Services), whereas the other group received a diet containing 23.6 g fat (lard and soybean oil)/100 g, 21.3 g protein (casein)/100 g, and 41.2 g carbohydrate/100 g (58V8, Test Diet). This represents in percent total energy: 46% fat, 18% protein, and 36% carbohydrate. At the end of the 20 wk, the mice were starved overnight prior to being culled with an overdose of Euthatal (Merial Animal Health). Plantar flexor muscles were removed as fast as possible and immediately frozen in liquid nitrogen. All procedures conformed to the UK Animals (Scientific Procedures) Act 1986 and were approved by the ethical review committee of the University of Dundee (UK).

Protein extraction, SDS/PAGE, and immunoblotting. Cells were rinsed once with PBS and harvested in a lysis buffer containing 20 mM Tris, pH 7.0, 270 mM sucrose, 5 mM EGTA, 1 mM EDTA, 1% Triton X-100, 1 mM sodium orthovanadate, 50 mM sodium β-glycero-phosphate, 5 mM sodium pyrophosphate, 50 mM sodium fluoride, 1 mM DTT, and a protease inhibitor cocktail containing 1 mM EDTA (Roche Applied Science). Frozen muscles were ground in a mortar and homogenized as previously described (5a). The homogenates were then centrifuged for 10 min at 10,000 g, and the supernatants were immediately stored at −80°C. Protein concentration was determined using the DC protein assay kit (Bio-Rad Laboratories).

Cell lysates (15 μg for cell culture proteins and 60 μg for skeletal muscle proteins) were combined with Laemmli sample buffer and separated by SDS-PAGE. After electrophoretic separation at 40 mA for 1 h, the proteins were transferred to a PVDF membrane at 80 V for 2 h for Western blot analysis. Membranes were then incubated in a 5% Blotto solution. Subsequently, membranes were incubated with the following antibodies overnight at 4°C: eEF2 (eukaryotic elongation factor 2), S6K1 (70-kDa ribosomal protein S6 kinase), phospho-S6K1 Thr389, phospho-S6K1 Thr421/Ser424, BiP, PDI (protein disulfide isomerase), MBTPS2 (membrane-bound transcription factor protease site 2), IRE1α, phospho-PERK Thr805, caspase-12, caspase-3, PARP (poly ADP-ribose polymerase), ATF6, and GAPDH (glyceraldehyde-3-phosphate dehydrogenase). All antibodies were from Cell Signaling, except the GAPDH was from Abcam, the ATF6 was from Bio-Medical, and the phospho-S6K1 Thr389, phospho-S6K1 Thr421/Ser424, and GAPDH were from Santa Cruz Biotechnology. Membranes were washed in TBS-T and incubated for 1 h at room temperature in a secondary antibody conjugated to horseradish peroxidase. After an additional three washes, chemiluminescence detection was carried out using an enhanced chemiluminescent Western blotting kit (ECL Plus, Amersham Biosciences). The films were then scanned on an ImageScanner using the Labscan software and quantified with the Image Master 1D Image Analysis software (Amersham Biosciences). Results are reported relative to eEF2 total for in vitro experiments and to GAPDH for in vivo experiments. Preliminary experiments show that eEF2 and GAPDH expressions did not change after the treatments. A value of 1 was arbitrarily assigned to the control conditions, which were used as a reference for the other conditions.

RNA extraction and quantitative real-time PCR. Total RNA from the cells of one 35-mm well (6-well plates) or from ~20 mg of frozen tissue samples was extracted with 1 ml of TriPure reagent (Roche) according to the instructions provided by the manufacturer (Roche Diagnostics). RNA was quantified by spectrophotometry (260 nm) and its concentration adjusted to 1 μg/μl by using RNAse-free water. Since soleus muscles have low protein yields (~5–6 mg), the RNA concentrations obtained after extraction were too low to perform the reverse transcription reaction. For tibialis anterior and C5C12 cells, cDNA was prepared by reverse transcription of 1 μg of total RNA using the reverse transcription system (Promega). SYBR Green was used for real-time PCR detection. Real-time PCR primers were designed (Table 1) for mouse CHOP, ATF4, spliced (s) XBP1, unspliced (u) XBP1, GAPDH, and RPL19 (ribosomal protein L19). Specific primers were designed to recognize the spliced, or active, form of XBP1 (XBP1s) vs. the unspliced form (XBP1u). GAPDH was
used as the reference gene for in vitro experiments and RPL19 for in vivo experiments. All samples were run at least in duplicate in a single 96-well reaction plate, and the data were analyzed according to the $2^{-\Delta\Delta CT}$ method. The identity and purity of the amplified product were checked through analysis of the melting curve carried out at the end of amplification. A value of 1 was arbitrarily assigned to the control condition to which the other conditions were reported.

Incorporation of $[^{35}S]$methionine/cysteine. Cells were maintained in serum-free DMEM while ER stress inducers were added for 17 h. ER stress inducers were maintained in culture medium during the whole experiment. Preliminary experiments confirm that the absence of serum did not modify the UPR induced by TN, TG, or PA. One whole experiment. Preliminary experiments confirm that the absence of amplification. A value of 1 was arbitrarily assigned to the control condition to which the other conditions were reported.

Results

RESULTS

HFD-1 Increases Body Mass, Decreases Glucose Tolerance, and Induces Inflammation

During HFD-1, mice fed with a normal diet increased body mass by 20% (Fig. 1A). At the end of the 6 wk, HFD-1 mice weighed 10% more than control mice (Fig. 1A, $P < 0.001$). HFD-1 increased visceral fat content by 50% (Fig. 1B, $P < 0.05$) compared with control mice. Mice fed HFD-1 were glucose intolerant as indicated by the OGTT performed at the end of the 6 wk (Fig. 1C). For the same amount of glucose given orally, plasma glucose concentrations remained elevated tolerance test. For these data, diet × time interactions were evaluated using a two-way analysis of variance for repeated measured (RM ANOVA). When appropriate, Student-Newman-Keuls post hoc tests were applied. The significance threshold was set to $P < 0.05$. Results are presented as means ± SE.

RESULTS

HFD-1 Increases Body Mass, Decreases Glucose Tolerance, and Induces Inflammation

During HFD-1, mice fed with a normal diet increased body mass by 20% (Fig. 1A). At the end of the 6 wk, HFD-1 mice weighed 10% more than control mice (Fig. 1A, $P < 0.001$). HFD-1 increased visceral fat content by 50% (Fig. 1B, $P < 0.05$) compared with control mice. Mice fed HFD-1 were glucose intolerant as indicated by the OGTT performed at the end of the 6 wk (Fig. 1C). For the same amount of glucose given orally, plasma glucose concentrations remained elevated tolerance test. For these data, diet × time interactions were evaluated using a two-way analysis of variance for repeated measured (RM ANOVA). When appropriate, Student-Newman-Keuls post hoc tests were applied. The significance threshold was set to $P < 0.05$. Results are presented as means ± SE.

RESULTS

HFD-1 Increases Body Mass, Decreases Glucose Tolerance, and Induces Inflammation

During HFD-1, mice fed with a normal diet increased body mass by 20% (Fig. 1A). At the end of the 6 wk, HFD-1 mice weighed 10% more than control mice (Fig. 1A, $P < 0.001$). HFD-1 increased visceral fat content by 50% (Fig. 1B, $P < 0.05$) compared with control mice. Mice fed HFD-1 were glucose intolerant as indicated by the OGTT performed at the end of the 6 wk (Fig. 1C). For the same amount of glucose given orally, plasma glucose concentrations remained elevated tolerance test. For these data, diet × time interactions were evaluated using a two-way analysis of variance for repeated measured (RM ANOVA). When appropriate, Student-Newman-Keuls post hoc tests were applied. The significance threshold was set to $P < 0.05$. Results are presented as means ± SE.

RESULTS

HFD-1 Increases Body Mass, Decreases Glucose Tolerance, and Induces Inflammation

During HFD-1, mice fed with a normal diet increased body mass by 20% (Fig. 1A). At the end of the 6 wk, HFD-1 mice weighed 10% more than control mice (Fig. 1A, $P < 0.001$). HFD-1 increased visceral fat content by 50% (Fig. 1B, $P < 0.05$) compared with control mice. Mice fed HFD-1 were glucose intolerant as indicated by the OGTT performed at the end of the 6 wk (Fig. 1C). For the same amount of glucose given orally, plasma glucose concentrations remained elevated tolerance test. For these data, diet × time interactions were evaluated using a two-way analysis of variance for repeated measured (RM ANOVA). When appropriate, Student-Newman-Keuls post hoc tests were applied. The significance threshold was set to $P < 0.05$. Results are presented as means ± SE.

RESULTS

HFD-1 Increases Body Mass, Decreases Glucose Tolerance, and Induces Inflammation

During HFD-1, mice fed with a normal diet increased body mass by 20% (Fig. 1A). At the end of the 6 wk, HFD-1 mice weighed 10% more than control mice (Fig. 1A, $P < 0.001$). HFD-1 increased visceral fat content by 50% (Fig. 1B, $P < 0.05$) compared with control mice. Mice fed HFD-1 were glucose intolerant as indicated by the OGTT performed at the end of the 6 wk (Fig. 1C). For the same amount of glucose given orally, plasma glucose concentrations remained elevated tolerance test. For these data, diet × time interactions were evaluated using a two-way analysis of variance for repeated measured (RM ANOVA). When appropriate, Student-Newman-Keuls post hoc tests were applied. The significance threshold was set to $P < 0.05$. Results are presented as means ± SE.

RESULTS

HFD-1 Increases Body Mass, Decreases Glucose Tolerance, and Induces Inflammation

During HFD-1, mice fed with a normal diet increased body mass by 20% (Fig. 1A). At the end of the 6 wk, HFD-1 mice weighed 10% more than control mice (Fig. 1A, $P < 0.001$). HFD-1 increased visceral fat content by 50% (Fig. 1B, $P < 0.05$) compared with control mice. Mice fed HFD-1 were glucose intolerant as indicated by the OGTT performed at the end of the 6 wk (Fig. 1C). For the same amount of glucose given orally, plasma glucose concentrations remained elevated tolerance test. For these data, diet × time interactions were evaluated using a two-way analysis of variance for repeated measured (RM ANOVA). When appropriate, Student-Newman-Keuls post hoc tests were applied. The significance threshold was set to $P < 0.05$. Results are presented as means ± SE.

RESULTS

HFD-1 Increases Body Mass, Decreases Glucose Tolerance, and Induces Inflammation

During HFD-1, mice fed with a normal diet increased body mass by 20% (Fig. 1A). At the end of the 6 wk, HFD-1 mice weighed 10% more than control mice (Fig. 1A, $P < 0.001$). HFD-1 increased visceral fat content by 50% (Fig. 1B, $P < 0.05$) compared with control mice. Mice fed HFD-1 were glucose intolerant as indicated by the OGTT performed at the end of the 6 wk (Fig. 1C). For the same amount of glucose given orally, plasma glucose concentrations remained elevated tolerance test. For these data, diet × time interactions were evaluated using a two-way analysis of variance for repeated measured (RM ANOVA). When appropriate, Student-Newman-Keuls post hoc tests were applied. The significance threshold was set to $P < 0.05$. Results are presented as means ± SE.
up to 90 min after gavage (Fig. 1C, P < 0.05), whereas plasma insulin concentrations were not different between groups (data not shown). The area under the curve was increased 1.8-fold by the HFD-1 (Fig. 1D, P < 0.05). Inflammation was assessed by measuring plasma levels of several pro- and anti-inflammatory cytokines (Table 2). HFD-1 increased IL-6 and IL-10 concentrations by 250% (P < 0.05). To confirm the inflammatory state at the tissue level, the phosphorylation state of JNK (c-Jun NH2-terminal kinase) and IKK (I-kB kinase) were measured as well as the mRNA expression of IL-1 and IL-6 in muscles and liver. JNK and IKK/NF-kB (nuclear factor-k-light-chain enhancer of activated B-cells) have been implicated in insulin resistance and inflammation induced by ER stress through the IRE1α pathway (11, 15). Phospho-JNK and phospho-IKK were increased by HFD-1 in the soleus, and phospho-JNK was increased in the liver. IL-1 mRNA level was increased and IL-6 decreased by HFD-1 in the tibialis anterior (P < 0.05; Fig. 1 Supplemental Fig. 1 (Supplemental materials are found in the online version of this paper at the Journal website)).

HFD-1 Increases the Expression of Proteins Involved in UPR

The UPR was measured in liver to ensure that ER stress was induced by high-fat feeding, as already described in the literature (28, 52). In the liver, the protein expression of PDI, IRE1α, MBTSPS2, and the phosphorylation of PERK, as well as the mRNA expression of XBP1u, were more than doubled (P < 0.05; data not shown). Having shown that the UPR was induced by high-fat feeding in a tissue known to be responsive to ER stress, we determined whether the same response could be observed in skeletal muscle.

Several UPR markers were higher in skeletal muscles of HFD-1 than in control mice (Fig. 2). The changes were more pronounced in slow-type soleus muscle (Fig. 2A) than in fast-type tibialis anterior muscle (Fig. 2C). In the soleus (Fig. 2A), HFD increased the protein expression of BiP (P < 0.05) and MBTSPS2 (P < 0.001), the enzyme that cleaves ATF6 into a functional transcription factor, eightfold and IRE1α (P < 0.05) fivefold. HFD also increased caspase-12 expression and (a functional transcription factor, eightfold and IRE1α resistance and inflammation induced by ER stress through the IL-6 decreased by HFD-1 in the tibialis anterior ([35%; Ctrl-1 HFD-1](28, 52)). In the liver, the protein expression of PDI, MBTPS2, and the phosphorylation of PERK, as well as the UPR markers, were specific to the 70% fat diet, we studied muscle from a second HFD experiment (HFD-2) using a lower percentage of fat (45%) for a longer period (20 wk). This diet was chosen as it is more representative of the diet in the developed world. Throughout the 20 wk of experiment, mice fed a normal diet increased body mass by 30% (Fig. 3A). At the end of the 20 wk, HFD-2 mice weighed 20% more than control mice (Fig. 3A, P < 0.001). HFD-2 almost doubled the percentage fat mass (Fig. 3B, P < 0.001) compared with control mice. Mice fed HFD-2 were glucose intolerant as indicated by the IPGTT performed at the end of the 20 wk (Fig. 3C, P < 0.05). The area under the curve was increased by 33% by the HFD-2 (Fig. 3D, P < 0.05).

45% HFD-2 Increases Expression of Proteins and mRNAs Involved in UPR

As observed after 70% HFD-1 for 6 wk, 45% HFD-2 for 20 wk increased several UPR markers in plantar flexor muscles (Fig. 4). HFD-2 increased the protein expression of BiP by 30% (P < 0.05), IRE1α by 200% (P < 0.001), and the phosphorylation of PERK by 50% (P < 0.05). Cleaved-to-total caspase-12 ratio tended to decrease in HFD-2 conditions without reaching the statistical threshold (Fig. 4B). HFD-2 had a more pronounced effect on the transcriptional regulation induced by the UPR (Fig. 4C). HFD-2 almost doubled ATF4 (P < 0.001) and CHOP mRNA (P < 0.01) and tripled both XBP1s and XBP1u forms (P < 0.001).

UPR Is Induced by TN, TG, and PA In C2C12 Myogenic Cells

Since both HFDs induced markers of ER stress, we next sought to determine the effect of ER stress on muscle cell function. The UPR was strongly activated by TN, TG, and PA in C2C12 cells (Fig. 5). After a 17-h incubation with these agents, BiP was increased more than 100-fold by TN and TG and more than 30-fold by PA (Fig. 5A, P < 0.001). IRE1α expression, which reflects the activation of the IRE1α pathway (44), doubled in TN and PA conditions and increased fivefold with TG (Fig. 5A, P < 0.05). Phosphorylation of PERK was increased 10-fold by TN and PA and 30-fold by TG (Fig. 5A, P < 0.05). ATF6 was reduced following PA incubation (Fig. 5A, P < 0.01).

ER stress inducers decreased caspase-12 total expression but increased the amount of cleaved caspase-12 except for PA, which only decreased caspase-12 total expression, making the ratio of cleaved to total caspase-12 significantly higher than in control conditions (Fig. 5B, P < 0.05).

Table 2. Plasma cytokine concentrations

<table>
<thead>
<tr>
<th>Ctl-1</th>
<th>HFD-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α</td>
<td>34 ± 11.3</td>
</tr>
<tr>
<td>IL-1β</td>
<td>26 ± 6.2</td>
</tr>
<tr>
<td>IL-6</td>
<td>22 ± 3.3</td>
</tr>
<tr>
<td>IL-10</td>
<td>43 ± 14.0</td>
</tr>
<tr>
<td>IL-15</td>
<td>306 ± 27.2</td>
</tr>
<tr>
<td>IL-18</td>
<td>440 ± 107.7</td>
</tr>
<tr>
<td>MCP-1</td>
<td>107 ± 13.1</td>
</tr>
<tr>
<td>MIP-1α</td>
<td>139 ± 10.6</td>
</tr>
<tr>
<td>TNF-α</td>
<td>26 ± 6.4</td>
</tr>
</tbody>
</table>

Values are means ± SE. Ctl-1, control 1; HFD-1, 6-wk high-fat diet; MCP-1, monocyte chemoattractant protein-1; MIP-1α, macrophage inflammatory protein-1α. *P < 0.05 vs. Ctrl-1.
Since ER stress induces responses at both the translational and the transcriptional levels, we also analyzed the mRNA levels of some well-documented transcriptional ER stress markers: CHOP, ATF4, and XBP1 (Fig. 5C) (10, 18). ATF4 mRNA was doubled by TN, TG, and PA (*P < 0.001), and CHOP mRNA was increased 10-fold in response to PA and 30-fold with TN and TG (*P < 0.001). XBP1s mRNA was 15-fold more abundant in TN and PA and 25-fold in TG than in control conditions (Fig. 5C, *P < 0.001). The large increase in the mRNA of the active form of XBP1 contrasted with the more modest increase in the unspliced form induced by TN and TG and even the decrease observed in PA conditions (Fig. 5C, *P < 0.001 vs. Ctrl-1).
PA decreases protein synthesis in C2C12 myogenic cells

PA did not affect the ability of insulin to increase 2-deoxyglucose (2-DG) uptake (data not shown) but decreased the rate of 35S incorporation into proteins by 20% (Fig. 6A, $P < 0.001$). The decrease in protein synthesis suggested that mTORC1 activity might be altered by PA. As a marker of mTORC1 activity, we measured the phosphorylation of the mTORC1 site on S6K1. Treatment for 17 h with PA resulted in a 50% decrease in S6K1 phosphorylation at Thr389 (Fig. 6B, $P < 0.01$), indicating that mTORC1 activity was decreased by ER stress. To determine whether the effect of PA on mTORC1 could have been mediated by ER stress, the effect of both TN and TG on S6K1 phosphorylation was determined. As with PA, treatment with TN or TG decreased S6K1 phosphorylation, indicating that the effects of PA on mTORC1 activity could be mediated by the ER stress response. In high-fat-fed mice, S6K1 phosphorylation tended to increase (Fig. 6C). However, since the mice were in the fasted state, the mTORC1 site (Thr389) was barely detectable, and the changes in S6K1 phosphorylation may be secondary to the altered hormonal milieu.

To determine the dynamics of the relationship between ER stress and mTORC1/S6K1, C2C12 myogenic cells were incubated for 6 or 24-h with TN alone, insulin alone, or both TN and insulin (Fig. 6D). After 6 h, the phosphorylation of PERK and the expression of BiP were marginally increased by TN, whereas phospho-S6K1 (Thr389) was increased by insulin even in the presence of TN. After 24 h, BiP was still increased, whereas PERK phosphorylation was not affected by TN. Phosphorylation of S6K1 by insulin at 24 h was repressed by TN. These data indicate that activation of the mTORC/S6K1 pathway by insulin does not induce ER stress in C2C12 myogenic cells, whereas activation of the UPR represses the basal phosphorylation state of the mTORC/S6K1 pathway as well as its activation by insulin.

DISCUSSION

The main findings of the present study are 1) that the UPR is activated in mouse skeletal muscle by an HFD and in C2C12 cells by PA, and 2) that ER stress can decrease protein synthesis and mTORC1 activity in muscle cells. This extends previous work in the pancreas and liver (6, 28, 52), suggesting that HFD results in ER stress in the primary metabolic organs.

The primary shortcoming of the paper is that the two HFDs were not controlled for caloric intake, carbohydrate content, sex of the mice, or the age of the mice at the onset of the diet. This is simply because, after discovering that HFD-1 induced the UPR, we wanted to confirm that this was not simply due to the extremely high fat content or the extremely low carbohydrate content. In fact, glucose deprivation has previously been shown to induce ER stress (12). It is thus possible that glucose deprivation, together with high levels of lipids, would have triggered the UPR. To eliminate this possibility, we wanted to test a more physiological diet and turned to our collaborators who had recently finished the study using HFD-2 looking at insulin resistance. Using the muscles, we confirmed that the UPR was activated in a lower-fat, higher-carbohydrate, “Western” diet. It was never our intention to compare the diets, only to confirm the presence of the UPR.

Recently, ER stress and UPR have gained major interest, as they have been proposed to be involved in the pathogenesis of diabetes (7), Parkinson’s, Alzheimer’s, and Huntington’s disease (8, 14, 20) as well as hypoxia/ischemia-induced heart and brain damage (5). In diabetes, ER stress might contribute to pancreatic β-cell dysfunction and death as well as insulin resistance in the liver and adipose tissue (41). Despite its potential role in metabolic disease, there is a paucity of studies on ER stress in skeletal muscle.

In the first study, mice were placed on a diet containing 70% fat for a period of 6 wk. In this study, the effect of high-fat...
feeding on the UPR was measured separately in slow soleus and fast tibialis anterior muscles, with the greatest effects observed in the soleus. Whereas the tibialis anterior muscle is a voluntary muscle that is used sporadically, the soleus is a postural muscle in mice and is continuously active during standing and locomotion. In the soleus muscle, BiP, IRE1α, MBTPS2, and PERK protein levels were increased more than fivefold, whereas in the more phasically active tibialis anterior muscle these changes were less pronounced. The difference could be due to greater susceptibility of oxidative fibers to an HFD, an additive effect of contractile activity and HFD on ER stress or increased uptake of fatty acids in the soleus due to its higher blood flow and metabolic requirements.

Based on previous in vitro experiments, the UPR has been divided into three canonical pathways (21, 23, 35, 38, 48). They can be summarized as follows, emphasizing the markers measured in the present study: 1) IRE1α and its downstream targets BiP and PDI; 2) active ATF6 and the protease that cleaves it (i.e., MBTPS2) and its downstream targets BiP, CHOP, and XBP1s; 3) PERK and its downstream target ATF4. We cannot relate the changes in ER stress markers that we observed in vivo to the activation of any single pathway. For example, the increase in IRE1α expression was accompanied by an increase in BiP, whereas high-fat feeding in either the soleus or the tibialis anterior muscle did not affect PDI expression. In the same way, ATF4 mRNA was increased without any increase in PERK phosphorylation in the tibialis anterior muscle. This may mean that by sampling only at 6 wk we missed the transient changes, such as phosphorylation of PERK, and measured only the more stable changes such as ATF4 expression. Alternatively, 70% HFD for 6 wk leads to a general induction of the UPR rather than the activation of a specific sensor (ATF6, PERK, or IRE1α) and its downstream signaling, as would have been hypothesized from previous in vitro experiments.

When the UPR is not sufficient to cope with ER stress, inflammation and insulin resistance may develop. The 70% HFD increased plasma levels of cytokines such as IL-6 and IL-10, and this was associated with whole body glucose intolerance as demonstrated by the OGTT. In the same way, glucose intolerance was also induced after 20 wk of a 45% HFD. Taken together, these data confirm that a mild chronic inflammatory state and glucose intolerance were induced by high-fat feeding. However, the role of ER stress in the development of these physiological conditions has yet to be determined.

A more serious consequence of failure of the UPR is apoptosis. Caspase-12 has been proposed as a potential marker/mediator of ER stress-induced apoptosis (42). Increased caspase-12 activity has been identified in many neurodegenerative diseases, such as Parkinson’s, Alzheimer’s, or Huntington’s diseases (8, 14, 20), which are believed to be the result of the fatal breakdown of the UPR. Caspase-12 is located at the ER membrane, and two different mechanisms have been proposed for its activation. The first involves an IRE1α-TRAF2 complex and is called “ER stress dependent” (50), while the

Fig. 4. 45% HFD-induced UPR in mouse skeletal muscle. A: protein expressions of BiP, IRE1α, MBTPS2, PDI, and phosphorylation of PERK. B: caspase-12 expression and cleavage in plantar flexor muscles after 20-wk HFD-2. C: mRNA level of ATF4, CHOP, XBP1s, and XBP1u in plantar flexor muscles after 20-wk HFD-2. Results are means ± SE. A value of 1 was arbitrarily assigned to control conditions to which HFD-2 were reported and expressed as fold basal. *P < 0.05, **P < 0.01, ***P < 0.001 vs. Ctrl-2.
second, “ER stress independent”, is associated with increase in calcium and caspase-7 activation (27). Despite an induction of the UPR, the 70% HFD did not change the expression of caspase-12 or its cleavage, suggesting that the degree of ER stress induced by 6-wk 70% HFD did not exceed the muscular capacity to refold/remove damaged proteins. Although no effect of HFD was observed on caspase-12, the basal cleavage pattern of this caspase seems to be different between soleus and tibialis anterior muscles. In the soleus muscle, a high percentage of the protein was in the cleaved form, whereas in the tibialis anterior, caspase-12 was found in its inactive total form. Since the soleus is a postural muscle, it experiences more frequent increases in intracellular calcium. The difference in caspase-12 cleavage may indicate that, in muscle, caspase-12 activation is mediated by calcium-dependent mechanisms rather than ER stress and may have other, apoptosis-independent, roles.

In the present study, C2C12 cells were used to determine the functional effects of ER stress. Tunicamycin and thapsigargin were used as positive controls to which the effect of palmitic acid could be compared. All three compounds dramatically increased the expressions of BiP, IRE1α, and phospho-PERK at the protein level and CHOP, ATF4, and XBP1 spliced and unspliced at the mRNA level. Since the UPR is known to decrease protein synthesis and increase insulin resistance and apoptosis, we directly or indirectly measured each of the following:

- Protein expression of BiP, IRE1α, ATF6, and phosphorylation of PERK.
- Caspase-12 expression and cleavage.
- mRNA level of ATF4, CHOP, XBP1s, and XBP1u.
- %cleaved caspase-3 and cleaved poly ADP-ribose polymerase (PARP) after 17-h treatment with tunicamycin (TN, 1 µg/ml), thapsigargin (TG, 200 nM), or palmitic acid (PA, 1 mM) in C2C12 cells.
- Dose-response curves of BiP and IRE1α protein expression and of PERK phosphorylation to increasing concentrations of PA (0–1,500 µM).

Results are means ± SE. A value of 1 was arbitrarily assigned to control conditions to which TN, TG, and PA values were reported and expressed as fold basal. *P < 0.05, **P < 0.01, ***P < 0.001 vs. Ctrl.
these events after palmitic acid treatment. Although palmitic acid clearly increased the UPR in myogenic cells, protein synthesis was the only physiological process that was affected over the 17 h of our study. This suggests that protein synthesis is the first process to be repressed in an effort to slow down the accumulation of newly synthesized proteins awaiting proper folding in the ER. A decrease in protein synthesis in skeletal muscle would, over time, be expected to lead to a decrease in lean body mass and, as a result, basal metabolic rate and glucose uptake in response to insulin. Whether the decrease in skeletal muscle protein synthesis in response to fat-induced ER stress plays a role in insulin resistance remains to be determined.

Recently, Sitnick et al. (39) have demonstrated that load-induced skeletal muscle hypertrophy is impaired in high-fat-fed mice. This decrease in hypertrophy was attributed to a decrease in ribosomal biogenesis and mTORC1 activation. mTORC1 is known to be physiologically inactivated only by the 5′-AMP-activated protein kinase (AMPK) (43), and during skeletal muscle overload AMPKα1 is activated and slows muscle hypertrophy (24, 25). However, high-fat feeding decreases AMPK activity (2, 22), so a different mechanism must underlie the effect of HFD on skeletal muscle hypertrophy. To determine whether ER stress could contribute to this decrease in hypertrophy, we determined the rate of protein synthesis and the activation of mTORC1 following treatment with palmitic acid. Consistent with a role for ER stress in decreased load-induced hypertrophy, palmitic acid decreased both basal protein synthesis and mTORC1 activation. It should be mentioned that protein synthesis was not measured in vivo, and it thus remains to be determined whether high-fat feeding under the conditions used in the present study decreases basal, postprandial, and/or load-induced protein synthesis.

We sought to confirm that mTORC1 activity was also decreased after high-fat feeding in vivo. Contrary to our in vitro observations, S6K1 phosphorylation tended to be upregulated, in accord with previously published reports showing that HFD increases S6K1 phosphorylation in the basal state (1, 17). This finding is not incompatible with our in vitro data, since the extended HFDs used in the in vivo models will result in large-scale changes in the hormonal environment that may contribute to the regulation of mTORC1 activity. It is also possible that mTORC1 goes through cycles of activation-inactivation during periods of high circulating fatty acids and that the increase or decrease observed in S6K1 phosphorylation is dependent on the time of day. These cycles might be the result of decreases in mTORC1 activity due to ER stress followed by compensatory/feedback upregulation due to a resultant increase in IRS-1 signaling (45). The cycling of mTORC1 activity is illustrated by two studies from the same group using a genetic model of obesity and diabetes. At baseline, obese Zucker rats display either decreased (16) or increased (31) S6K1 phosphorylation compared with lean controls. The only difference between the two studies is the age of the rats at the time of the experiment, 12 (16) vs. 6 wk (31). Therefore, it seems that the time course of study is an important consideration when conducting studies on high-fat feeding and protein synthesis.

It should also be mentioned that the relationship between ER stress and mTORC1 is probably not unidirectional. A previous report has shown that hyperactivation of mTOR such as seen in tuberous sclerosis complex-deficient cells causes ER stress and activates the UPR (30). We directly tested whether 6 or 24 h of hyperactivation of mTORC1 by insulin was able to trigger the UPR in C2C12 cells. In our conditions, insulin did not induce the UPR at any time point studied. Interestingly, tunicamycin activated the UPR before S6K1 phosphorylation decreased, suggesting that in C2C12 cells the induction of ER stress precedes the impairment in mTORC1 activity.

In conclusion, we show that a high-fat diet activates the unfolded protein response in mouse skeletal muscle in vivo. In addition, in vitro palmitic acid, like other well-known ER stress inducers, triggered the unfolded protein response and also led to a decrease in protein synthesis and the activity of mTORC1. These findings suggest that components of the ER stress pathway might contribute to a decrease in muscle mass and the response to growth stimuli, as a result of metabolic syndrome.

Fig. 6. ER stress reduces mTORC1 activity. A: palmitic acid (PA, 1 mM) reduces 35S incorporation. B: PA (1 mM), tunicamycin (TN, 1 μg/μl), and thapsigargin (TG, 200 nM) decrease phosphorylation of S6K1 on Thr389. C: phosphorylation of S6K1 on Thr389 and on Thr421/Ser424 after 6-wk HFD-1 and after 20-wk HFD-2. D: phosphorylation of S6K1 (Thr389) and PERK and expression of BiP after 6 and 24 h in C2C12 cells treated with TN alone (1 μg/μl), insulin alone (Ins, 10 and 50 nM), or TN and insulin. S6K1, 70-kDa ribosomal protein S6 kinase; TA, tibialis anterior. Results are means ± SE. **P < 0.01, ***P < 0.001 vs. Ctrl.
ACKNOWLEDGMENTS

We thank Damien Naslain, Gang-Li An, and Vincent d’Harveng for technical assistance.

Current address for A. Philp and K. Baar: Dept. of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Ave., 181 Briggs Hall, Davis, CA 95616.

GRANTS

This work was supported by the Fonds National de la Recherche Scientifique (FRS-FNRS), by the UCLouvain (F. S. R), and a project grant from the Wellcome Trust (077426). L. D is Postdoctoral Researcher, and P. D. C is Research Associate from the FRS (Fonds de la Recherche Scientifique)-FRS, Belgium.

DISCLOSURES

No conflicts of interest are reported by the authors.

REFERENCES

