"Occupational heat stress assessment by the Predicted Heat Strain model."

Malchaire, Jacques

Abstract
The work of the main European research teams in the field of thermal factors was coordinated in order to improve significantly the Required Sweat Rate model published as an international standard. Many significant modifications were brought, in particular concerning the effects of forced convection, body movements and exercise and the prediction of the skin temperature as a function of the rectal temperature and in case of severe conditions of radiation, humidity and clothing. The criteria for acceptable work durations in hot environments were updated concerning the maximum increase in core temperature and the acceptable water loss. The revised model, called Predicted Heat Strain model, was validated through a set of lab and field experiments involving stable and fluctuating conditions with high and low radiation, humidity and air velocity. It is meanwhile adopted as an ISO and CEN standard. In addition, a strategy was developed to assess the risks of heat disorders in any working si...
Occupational Heat Stress Assessment by the Predicted Heat Strain Model

J.B.M. MALCHAIRE

Occupational Hygiene and work Physiology, Catholic University of Louvain, Clos Chapelle aux Champs, 3038, B-1200 Brussels, Belgium

Received January 16, 2006 and accepted April 12, 2006

Abstract: The work of the main European research teams in the field of thermal factors was co-ordinated in order to improve significantly the Required Sweat Rate model published as an international standard. Many significant modifications were brought, in particular concerning the effects of forced convection, body movements and exercise and the prediction of the skin temperature as a function of the rectal temperature and in case of severe conditions of radiation, humidity and clothing. The criteria for acceptable work durations in hot environments were updated concerning the maximum increase in core temperature and the acceptable water loss. The revised model, called Predicted Heat Strain model, was validated through a set of lab and field experiments involving stable and fluctuating conditions with high and low radiation, humidity and air velocity. It is meanwhile adopted as an ISO and CEN standard. In addition, a strategy was developed to assess the risks of heat disorders in any working situation. It is based on the three highest stages of the SOBANE strategy: an “Observation” method for improving simply the thermal conditions of work; an “Analysis” method to evaluate the magnitude of the problem and optimise the choice of solutions and an “Expert” method for in depth analysis of the working situation when needed.

Key words: Heat stress, Prevention, Strategy, Heat indices, ISO 7933

Introduction

The objective of the research project was to coordinate the work of the some of the main European research teams in the field of thermal factors in order to develop and improve significantly the available methods to evaluate the risk of thermal strain during work in hot environments.

The standard ISO 79331 “Analytical Determination and Interpretation of the Thermal Stress based on the calculation of Required Sweat Rate” was published for the first time in 1989. Since, it was abundantly criticized and many papers were published comparing a version (not always indicated) of the required Sweat Rate index with sets of data.

Although such comparisons were each time limited to a particular set of data, systematic criticisms concerned:
- The prediction of the skin temperature
- The influence of clothing on convection, radiation and evaporation

- The combined effect of clothing and movements
- The increase in core temperature related to activity
- The exposure limit criteria and in particular the alarms and danger levels
- The allowed maximum water loss.

The points requiring a concerted research were consequently identified as being:
- The coefficients of heat exchange by convection, radiation and evaporation in extreme conditions.
- The modelling of the physiological behaviour during work to heat and, in particular, of the average skin temperature, the core temperature (rectal) and sweat rate.
- The criteria for the determination of the exposure duration limit, taking account of the interindividual differences between the workers.

The specific objectives of the research project consequently were:
PREDICTED HEAT STRAIN ASSESSMENT

To extend the validity of the previous Required Sweat Rate model by better taking account of clothing.

To improve the validity of the model in the event of high radiation, high moisture or high air velocity.

To better define the criteria for the determination of the exposure duration limits and in particular the interindividual differences in term of sweat rate, evaporative efficiency, water loss and increase in core temperature.

With all the experience that the participants to the research had in the field concerning the improvement of the climatic conditions of work, the group reached the conclusion that ISO standard 7933, describing the Required Sweat Rate was so sophisticated that it was simply not understood nor used in industry. This situation was likely to be worse as the complexity increased for the Predicted Heat Strain.

It was realized that the WGBT index, in spite of its lack of validity, was the main tool to describe a hot environment of work, due mainly to its simplicity and the fact that it is expressed in terms of a temperature. It is clear that this simplicity is more apparent than real (what is the rationale in the organization of the recommended work–rest regimens?) and is sometimes source of confusion (how to explain to people in the field that the WGBT is 25°C, while the local thermometer indicates 36°C?).

Nevertheless, an attempt was made to derive an index expressed also in terms of an "equivalent" temperature. It failed, proving at the same time the lack of validity of the WGBT index.

Another attempt concerned the use of the PHS index and the strategy to improve working conditions in the heat. Since the mathematics of the PHS model is too difficult to understand, it should simply not be explained to potential users in the field and should be used as a black box, providing estimates of the core temperature and the sweat rate when the conditions of exposure are introduced: indeed, no one needs to understand how works an engine in order to drive a car.

The specific objective of this part of the research project consequently was to conceive and validate a strategy of evaluation of the constraint during work in hot environments, strategy likely to be used by people in the field to determine the exposure duration limits and to optimize the improvement of the work environment.

Influence of Clothing on the Heat Transfers by Convection and Evaporation

The heat loss by convection is a main part of the heat loss of the human body, particularly in moderate climates. In hotter environments, the heat loss depends more on evaporation, itself function of the characteristics of clothing.

An important aspect of the transfers of heat per convection and evaporation is the effect wind velocity and movements on the transfer coefficients on the surface layer of the clothes.

The tables of standard ISO 9920\(^1\) give static values of heat insulation for various clothing sets. A factor played by clothing in the heat transfer is that it increases the heat transfer surface between the body and the environment. This increase is larger as the clothing is thicker and more insulating.

The research was mainly concerned with the combined effect of the movement and wind on clothing. Starting from experiments with subjects and on mannequins, the study made it possible to develop various expressions of correction\(^3\)–\(^5\), according to the wind velocity, the direction and the velocity of walk and the workload. Simple expressions were developed to correspond to more common working conditions.

Prediction of the Skin Temperature \(t_{sk}\)

A common structure was defined to gather in the same data base, all the data coming from 1,113 experiments carried out by the various partners. For each experiment, the minute per minute values of 10 constraint parameters were available, among which the observed skin temperature, calculated as a weighted average of at least 4 local measurements. Points corresponding to constant conditions were selected in each experiment.

Few data (less than 10%) being available for women, it was decided to use in the model the prediction of \(t_{sk}\) on the basis of data only relating to men. Consequently, the final data base included 1999 points of data concerning 377 subjects.

The analysis was carried out separately for naked subjects (1,212 points with less than 0.2 clo) and clothed subjects (787 points between 0.6 and 1 clo).

The relation between the average \(t_{sk}\), the primary climatic parameters, the metabolic rate and the rectal temperature was represented by an additive model.

For the subset of data relating to the naked subjects, a model of prediction excluding the non significant variable metabolic rate was obtained:

\[
t_{sk} = 7.19 + 0.064 t_a + 0.061 t_r + 0.198 P_s - 0.348 v_c + 0.616 t_{re}
\]

with \(t_a = \) the air temperature (°C)
\(t_r = \) the mean radiant temperature (°C)
The multiple coefficient of correlation between the observed values and predicted was equal to 0.86 and 83.3% of the predicted skin temperatures were in the range of ± 1°C from the observed values.

The following model was obtained for the clothed subjects

\[t_{sk} = 12.17 + 0.020 t_a + 0.044 t_r + 0.194 P_a - 0.253 v_a + 0.00297 M + 0.513 t_{re} \]

with \(M \) = the metabolic rate (Wm\(^{-2}\))

The coefficient of correlation (0.77) was lower than for naked subjects, but 81.8% of the predicted values were in the range of ± 1°C from the observed values.

An article showing the detail of these new models was published\(^6\).

The Model of Prediction of the Thermal Strain (PHS: Predicted Heat Strain)

Respiratory heat losses by evaporation and convection

Although these losses are relatively limited during work in hot environments, they are often of the same order of magnitude as the convection heat loss. However, the storage of heat is determined by the difference between the required and predicted evaporation rates. In very hot environments, respiratory losses can consequently come to play a significant part in the thermal balance of the body. The former expressions were re-examined and improved on basis of work by Livingstone\(^7\) (1994) and Varene\(^8\), so as to hold account at the same time of ambient temperatures and moistures.

The average body temperature

From articles published by Kähkönen\(^9\) and Colin et al.\(^10\), an algorithm was developed to predict the average body temperature by a weighted average of the temperatures rectal and skin. The weight allotted to the latter varies from 30% when the rectal temperature is 36.8°C with 10% only when it is equal to 39°C. This algorithm thus takes into account the peripheral vasodilatation associated with a rise in core temperature.

Distribution of the heat accumulated in the body

An algorithm was developed to predict the distribution of heat between the skin layer and in the core of the body. Whereas the core temperature is taken constant, the temperature is supposed to vary linearly between the skin surface temperature and the rectal temperature, through the thickness of the skin layer.

Prediction of the rectal temperature

On the basis of work of Edwards et al.\(^11\), an algorithm was developed to predict the increase in the rectal temperature resulting from storage of heat.

Exponential weighting for the skin temperature (\(t_{sk} \)) and sweat rate (SW)

As shown by Malchaire\(^12\), the skin temperature and sweat rate at a certain time can be calculated by a recurrent exponential model according to the values existing at the previous moment and of the steady state towards which would evolve these parameters if the current thermal conditions were to exist indefinitely.

This exponential weighting makes it possible to predict the thermal state at any minute, in any variable climate, according to the conditions to which the person is exposed at that minute and what she was exposed during the minutes and hours that preceded.

Possible maximum sweat rate

Publications by Araki et al.\(^13\) and Gosselin\(^14\) suggested that the maximum sweat rate for an average non acclimatized subject can vary between 650 and 1,000 g/h, according to the metabolic rate.

For the acclimatized subjects, it is known that the sweat rate in a given environment can be twice greater than for a non acclimatized subject. However, this refers to the actual sweat rate and not to the maximum sweat rate capacity. By excluding the studies for which the maximum capacity was not reached, the review of the literature made it possible to conclude that the maximum sweat rate increases by only 25% on average for the acclimatized subjects\(^15\).

Increase in core temperature \(t_{cor} \) related to the metabolic rate \(M \)

According to Saltin and Hermansen\(^16\), in a neutral condition, the equilibrium core temperature \(t_{cor} \) corresponding to a metabolic rate \(M \) can be estimated by: \(t_{cor} = 36.6 + M / 500 \) (M expressed in Watts).

The core temperature reaches this equilibrium temperature \(t_{cor} \) with a time constant of approximately 10 min.

It can be supposed that the body does not try to lose the heat stored during this adaptation and thus does not perspire for this purpose. Consequently, the required sweat rate must not be estimated from the required evaporation rate \(E_{req} \), but
from the difference \(\Delta T = E_{req} - dSR \), where \(dSR \) is the heat accumulated at a given time to reach this equilibrium temperature.

Limit of the internal temperature

Report 412 of WHO published in 1969\(^{17}\) mentioned that “it is not recommended that the body core temperature exceeds 38°C for a daily exposure to heavy work…” Since then, this value of 38°C was regarded as the maximum value for which the probability of a heat disorder is negligible.

From work undertaken by Wyndham *et al.*\(^{18}\), two maximum rectal temperatures could be proposed:

- 39.2°C: this could quickly lead to total disability in most men, with excessive, often disturbing, physiological changes.
- 42°C: the maximum rectal temperature to avoid any physiological sequels.

The probability to reach these temperatures could be limited as follows:

- for 39.2°C: less than \(10^{-3} \) (less than 1 person at risk among 1,000 shifts).
- for 42°C: less than \(10^{-6} \) (less than 1 severe heat stroke every 4 years among 1,000 workers) (250 d/yr)

From the data of Wyndham and Heyns\(^{19}\) and Kampmann\(^{20}\), it was determined that the average rectal temperature had indeed to be limited to 38°C, as suggested by the WHO document, in order to respect these low probabilities.

Dehydration and maximum water loss

Candas *et al.*\(^{21}\) reported that a dehydration of 3% of the body mass increases the heart rate and decreases the sensitivity of sweating. This 3% value can consequently be accepted as the maximum allowable dehydration in industry. Kampmann\(^{22}\) showed that, in coal mines, after an exposure from 4 to 8 a.m., the average rate of rehydration was 60%, independently of the total quantity of sweat produced and that 95% of the subjects had a rate of rehydration higher than 40%.

On the basis of these values, it was proposed that the maximum water loss, taking into account the normal compensations, be equal to:

- 7.5% of the body mass for an average subject.
- 5% of the body mass for 95% of the working population.

The PHS model

The Required Sweat Rate model was revised using all the new algorithms described above and was renamed Predicted Heat Strain (PHS) as it predicts the physiological parameters (sweat rate and rectal temperature) minute per minute according to the working conditions.

Two articles describe more in detail the criteria for calculation of the limiting durations of exposure\(^{23}\) and the validation of the PHS model\(^{24}\).

Validation of Model PHS

Choice of the data

The database described above was used for the validation of new PHS model.

From the 95% confidence intervals at the primary parameters, it was determined that the model could be validated in the ranges of values reported in Table 1.

For the validation, data points were selected for each experiment by using the following criteria:

- For sweat rate: average sweat rate on the whole experiment;
- For the rectal temperature, selection of points (one per hour) in each experiment.

Validation based on the laboratory experiments

Table 2 gives the results of the linear regressions between the observed and predicted rectal temperatures and the observed and predicted sweat rates for the laboratory experiments and the experiments in the field. Figure 1 compares the predicted and observed sweat rates. The 95% confidence limits of the values were calculated in the polar co-ordinates so that uncertainty between predicted values and observed values is proportional to the observed sweat rate.

The average polar line equation was:

\[
SW_{obs} = 0.918 \times SW_p
\]

(with the 95% confidence interval (CI: 0.540–1.523))

Figure 1 shows that the regression line is practically identical to the line at 45°C.

Three points are higher than the upper limit of the 95% confidence interval. They come from three different partners and show the influence of the interindividual differences. Indeed, for identical experiments but with other subjects, the data are above or below the straight regression line and in the confidence interval. The same remark can be made for points located below the lower limit of the 95% confidence interval.

Figure 2 compares the observed and predicted rectal temperatures.
The averages and standard deviations of the observed and predicted values are almost identical. The coefficient of correlation is equal to 0.66 and is lower than that obtained for sweat rate.

The average polar line equation is:

$$t_{re\, obs} = 1.000 \times t_{re\, p} \quad \text{(with CI: 0.979–1.020)}$$

Again, the points located apart from the 95% confidence interval (Fig. 3) are due to the interindividual differences.

Validation based on the field experiments

Figures 3 and 4 compare the observed and predicted sweat rate (Fig. 3) and rectal temperature (Fig. 4) for the experiments in the field.

The precision of climatic and physiological measurements being generally lower for the experiments in the field, the correlations between the observed and predicted values tend to be lower with larger confidence intervals at 95%.

The average polar line equations are:

$$SW_{obs} = 0.851 \times SW_{p} \quad \text{(with CI: 0.328–1.936)}$$

$$t_{re\, obs} = 1.000 \times t_{re\, p} \quad \text{(with CI: 0.981–1.019)}$$

Table 1. Ranges of validity for the PHS model

<table>
<thead>
<tr>
<th>t_a °C</th>
<th>P_r kPa</th>
<th>t_r-t_a °C</th>
<th>v_i m/s</th>
<th>M W</th>
<th>I_o Clo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>Max</td>
<td>50</td>
<td>4.5</td>
<td>60</td>
<td>450</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 2. Regressions between observed and predicted (PHS) values of rectal temperature and sweat rate

<table>
<thead>
<tr>
<th></th>
<th>Laboratory experiments</th>
<th>Field experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweat rate (g/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>672</td>
<td>237</td>
</tr>
<tr>
<td>Observed (m ± s)</td>
<td>424 ± 172</td>
<td>317 ± 187</td>
</tr>
<tr>
<td>Predicted (m ± s)</td>
<td>451 ± 154</td>
<td>344 ± 132</td>
</tr>
<tr>
<td>R</td>
<td>0.7601</td>
<td>0.7448</td>
</tr>
<tr>
<td>alpha</td>
<td>0.918</td>
<td>0.851</td>
</tr>
<tr>
<td>alpha CI95%</td>
<td>0.540–1.523</td>
<td>0.328–1.936</td>
</tr>
<tr>
<td>Obs. –Pred. (m ± s)</td>
<td>−27.5 ± 114.1</td>
<td>−26.7 ± 125.1</td>
</tr>
</tbody>
</table>

Rectal temperature (°C)		
N	1937	1028
Observed (m ± s)	37.45 ± 0.47	37.40 ± 0.44
Predicted (m ± s)	37.46 ± 0.47	37.40 ± 0.34
R	0.6585	0.5940
alpha	1.000	1.000
alpha CI95%	0.980–1.020	0.981–1.019
Obs. –Pred. (m ± s)	−0.01 ± 0.39	−0.01 ± 0.36

Figs. 1 and 2. Observed vs predicted values of sweat rate and rectal temperature (with the 95% confidence interval) for the 672 laboratory experiments.

Figs. 3 and 4. Observed vs predicted values of sweat rate and rectal temperature (with the 95% confidence interval) for the 237 field experiments.
Strategy for the Management of the Working Conditions to Heat

The developed strategy follows the principles of the SOBANE strategy25). The approach can be summarized by the graphics of Fig. 5. The strategy includes 4 levels of intervention strictly directed towards prevention, since the main objective of the evaluation of the risks related to the thermal environment is not to assess the risks, but to prevent or eliminate it or, at least, to reduce it at the lowest reasonable level.

The 4 levels of the strategy can be described briefly as follows:

Level 1: Screening
On the first level, all or the majority of the factors of risk or problems are detected in order to provide a first overall picture of the work situation. During a 2h meeting with some workers and members of the local management, the working conditions are systematically reviewed concerning the aspects of safety, health, wellbeing, ease of work and productivity. The conclusions relate, in particular, to the existence of complaints concerning the climatic conditions and to the need for additional investigations, but also to any aspect of the work situation, in order to improve comprehensively and coherently the living conditions.

Level 2: Observation
The second level is now focused on the climatic conditions of work. It is again implemented by the persons from the work situation (workers and management). It remains simple to understand and use by the untrained people and benefit from what the users know best, namely their working conditions in the course of time, the technical process, the characteristics of the hot or cold sources and the possibilities for prevention measures. The method helps them to structure and systematize their approach, so that it is not only based on perceptions and opinions.

Level 3: Analysis
The third level is conceived to be implemented with the assistance of an occupational health (OH) practitioner such as an occupational physician, an industrial hygienist, an ergonomist... having, at least, a basic training in the management of thermal problems. The method still uses concepts and techniques generally known in the field, thus avoiding sophisticated considerations such as evaporative efficiency or wettedness. When measurements are required to optimize prevention measures, they are simple and can be made with instruments inexpensive, easy of use and easily available in the field.

The method remains oriented towards prevention and is consequently based on measurements and indices that make possible to better identify the causes of the problems and the means of solving them. Here, the PHS model is used as a black box.

At the end of the Analysis, the users should be able to determine whether the problems are solved or whether a more complete Expertise is Required.

Level 4: Expertise
This level can be required in very complex cases where satisfactory solutions still could not be found after the detailed Analysis. It must be carried out with the assistance of a specialist who should be able to decide the best way of answering the specific problem. Consequently, the methodology to use, the measurements to make, the evaluation to carry out will vary according to the problem and the method is limited to a broad outline of what this Expertise study should necessarily include and provide.

The final version of the strategy was prepared and validated in the field with the contribution of 53 OH practitioners. An article describing in detail the strategy was published26) and the strategy is now accepted as the ISO standard 1526527).

Conclusions
The Predicted Heat Strain model is derived from an in-depth revision of the previous Required Sweat Rate model and new algorithms were developed, based on the scientific literature concerning the convection and evaporation heat transfers, the skin temperature, the heat distribution between the skin and the core of the body, the rectal temperature....
The maximum criteria of sweat rate, dehydration and increase in the core temperature were also re-examined.

The Predicted Heat Strain (PHS) makes it possible to predict the sweat rate and the rectal temperature for an average subject and to calculate the duration limit of exposure to protect 50% and 95% from the population of the workers.

The PHS model was validated starting from data coming from 672 experiments undertaken in laboratory previously by the various partners of this research. The model proves to provide reasonably accurate predictions, taking into account the interindividual differences in physiological response to heat. The results were also tested in 237 experiments in the field: the prediction accuracy can be regarded as satisfactory, considering the fact that the precision of the primary data collected in the field is generally reduced.

The PHS model has replaced entirely the required sweat rate model in the revised version of the ISO 7933 standard. It is clear that the model is very much more sophisticated than the previous one and the users must be invited to use it as a simple black box or computer program, allowing to predict the physiological evolution of a person when exposed to an environment described by the 6 primary parameters of air temperature and humidity, radiation, air velocity, metabolic rate and clothing insulation.

This research made it possible to provide the people exposed themselves and the OH practitioners with a set of complementary methods clear and simple to use, likely to enable them to protect the workers more effectively, more rapidly and more economically.

These methods should also make it possible to guarantee the same level of safety and health in all industries in all the countries and in particular in the countries of the south which are mostly concerned with these working conditions.

The development of more adequate standards should pave the road towards a European directive specific on the evaluation of the working conditions to heat or, at least, should clarify the requirements of the European Directive 89/654 about the minimal conditions of safety and health for the work places.

Acknowledgements

The PHS model was developed during a research sponsored by the Program BIOMED II of the European Commission of the European Union and conducted by some of the prominent European specialists in thermal physiology:

- G. Alfano, DETEC c/o FAC. Ingegneria, Piazzale Tecchio 80, I - 80125 Napoli
- E. Den Hartog, TNO Human Factors, Dept. of Work Environment, Thermal Physiology Group, Kampweg 5, P.O. Box 23, NL - 3769 ZG Soesterberg
- H. Gebhardt, Institut für Arbeitsmedizin, Sicherheitstechnik und Ergonomie, Corneliusstr.31. D - 42329 Wuppertal
- I. Holmer, National Institute of Working Life (NIWL), S - 171 84 Solna
- B. Griefahn and P. Mehnert, Institute für Arbeitsphysiologie an der Universität Dortmund, Ardeystr. 67, D - 44139 Dortmund
- B. Kampmann, Institut für Arbeitswissenschaften der Ruhr Kohle Aktiengesellschaft, Hülsloph 28, D-44369 Dortmund
- K. Parsons, G. Havenith, Thermal Human Environments Laboratory, Loughborough University, Ashby Road, The U.K. - Loughborough, Leicestershire LE11 3TU, the U.K.

References

22) Kampmann B (1997b) Working paper GT2/12 of BIOMED project BMH4-CT96-0648 “HEAT”: Rehydration in field experiments and laboratory investigations, Catholic University of Louvain, Brussels.