"Structural insights into the catalytic mechanism of a sacrificial sulfur insertase of the N-type ATP pyrophosphatase family, LarE."

Fellner, Matthias ; Desguin, Benoît ; Hausinger, Robert P ; Hu, Jian

Abstract
The lar operon in Lactobacillus plantarum encodes five Lar proteins (LarA/B/C/D/E) that collaboratively synthesize and incorporate a niacin-derived Ni-containing cofactor into LarA, an Ni-dependent lactate racemase. Previous studies have established that two molecules of LarE catalyze successive thiolation reactions by donating the sulfur atom of their exclusive cysteine residues to the substrate. However, the catalytic mechanism of this very unusual sulfur-sacrificing reaction remains elusive. In this work, we present the crystal structures of LarE in ligand-free and several ligand-bound forms, demonstrating that LarE is a member of the N-type ATP pyrophosphatase (PPase) family with a conserved N-terminal ATP PPase domain and a unique C-terminal domain harboring the putative catalytic site. Structural analysis, combined with structure-guided mutagenesis, leads us to propose a catalytic mechanism that establishes LarE as a paradigm for sulfur transfer through sacrificing its catalyti...

Document type: Article de périodique (Journal article)

Référence bibliographique
DOI : 10.1073/pnas.1704967114

Available at:
http://hdl.handle.net/2078/191945
[Downloaded 2018/12/01 at 01:54:59]
Structural insights into the catalytic mechanism of a sacrificial sulfur insertase of the N-type ATP pyrophosphatase family, LarE

Matthias Fellnera,1, Benoît Desguina,b,1, Robert P. Hauingera,c,2, and Jian Hua,d,2

aDepartment of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824; bInstitute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium; cDepartment of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824; and dDepartment of Chemistry, Michigan State University, East Lansing, MI 48824

Edited by JoAnne Stubbe, Massachusetts Institute of Technology, Cambridge, MA, and approved July 19, 2017 (received for review March 25, 2017)

The \textit{lar operon} in Lactobacillus plantarum encodes five \textit{lar} proteins (\textit{LarA/B/C/D/E}) that collaboratively synthesize and incorporate a niacin-derived Ni-containing cofactor into \textit{LarA}, an Ni-dependent lactate racemase. Previous studies have established that two molecules of LarE catalyze successive thiolation reactions by donating the sulfur atom of their exclusive cysteine residues to the substrate. However, the catalytic mechanism of this very unusual sulfur-sacrificing reaction remains elusive. In this work, we present the crystal structures of LarE in ligand-free and several ligand-bound forms, demonstrating that LarE is a member of the N-type ATP pyrophosphatase (PPase) family with a conserved N-terminal ATP PPase domain and a unique C-terminal domain harboring the putative catalytic cleft. Structural analysis, combined with structure-guided mutagenesis, leads us to propose a catalytic mechanism that establishes LarE as a paradigm for sulfur transfer through sacrificing its catalytic glycine residue.

Thiolation | ATP pyrophosphatase | crystal structure | Lar protein | catalysis

Lactic acid, composed of both \textit{l}- and \textit{d}-isomers, is a widespread organic compound produced during microbial fermentations via stereospecific lactate dehydrogenases. Certain bacteria possess the ability to interconvert the two enantiomers by using lactate racemase, which was only recently described in genetic (1), structural (2), synthetic modeling (3), and computational studies (4, 5).

\textit{LarA} from \textit{Lactobacillus plantarum} is responsible for lactate racemase activity. This Ni-dependent enzyme (1) contains a newly identified cofactor, pyridinium-3,5-bis(carboxylic acid) mononucleotide (P2TMN), that is covalently attached to an active-site lysine residue (2). Most interestingly, P2TMN binds an Ni atom using sulfur, carbon, and sulfur atoms of an SCS-pincer complex (2), making \textit{LarA} the ninth discovered Ni-dependent enzyme (6).

Synthesis of Ni-bound P2TMN occurs through a pathway involving three proteins encoded in the \textit{lar} operon (i.e., LarB, LarC, LarE) (1). LarB is a carboxylase/hydrolase that produces pyridinium-3,5-bis(carboxylic acid) mononucleotide (P2CMN) from nicotinic acid adenine dinucleotide (7). LarE then converts P2CMN into P2TMN through two successive sulfur transfer reactions. Finally, LarE is thought to provide the Ni atom to generate the active form of the pincer cofactor of \textit{LarA} (7) (Fig. 1).

The amino acid sequence of LarE suggests it has two domains. The N-terminal domain is homologous to N-type ATP pyrophosphatase (PPase) domains (8), containing a conserved SGGSxD motif that binds and hydrolyzes ATP to form AMP and pyrophosphate. Examples of enzymes with this domain are guanine monophosphate (GMP) synthetase, nicotinamide mononucleotide (NMN) synthetase, and nicotinamide adenine dinucleotide (NAD) synthetase. These enzymes activate substrate carboxyl or carbonyl groups by adenylylation (AMPylation) (9). The C-terminal domain of LarE has no homology to any member of the N-type ATP PPase family, which use their C-terminal domains to recognize specific substrates and catalyze their versatile reactions. We therefore hypothesize that LarE represents a new member of this enzyme family that acts as a sulfur insertase of P2CMN by sacrificing a sulfur atom from an invariant cysteine residue (Cys176) (7) that is located in the C-terminal domain. Structural studies of LarE could be used to clarify the detailed process of this unique reaction.

Here, we present crystal structures of LarE in different states (substrate-free, ATP-bound, AMP-bound, and substrate analog-bound), which enables us to propose a catalytic mechanism that is further supported by site-directed mutagenesis and enzymatic activity assays. Our study reveals that LarE is a member of the N-type ATP PPase family and demonstrates that its C-terminal catalytic site confers a unique catalytic mechanism.

Results

Quaternary Structure of LarE. The initial crystal structure of \textit{L. plantarum} LarE (LarE\textsubscript{Lp}) produced in \textit{Lactococcus lactis} was solved by single-wavelength anomalous dispersion using a selenomethionine-substituted crystal at 3.3 Å. Although we later solved the crystal structures of LarE\textsubscript{EC} produced by \textit{Escherichia coli} with several different space groups under different crystallization conditions, LarE always was shown to form a hexamer (Fig. 2). Size exclusion chromatography results also supported a

Significance

Thiolation reactions are essential steps in the synthesis of numerous biological metabolites. To make the novel sulfur-containing cofactor of \textit{LarA}, an Ni-dependent lactic acid racemase, LarE catalyzes a critical sulfur transfer reaction to a nicotinic acid-derived substrate by converting the protein’s cysteine residue to dehydroalanine. In this study, crystal structures of ligand-free and several ligand-bound forms of LarE provide a structural basis for a catalytic mechanism that is further supported by structure-guided mutagenesis and functional assays. This work establishes LarE as a sulfur insertase within the N-type ATP pyrophosphatase family and presents a paradigm for sulfur transfer through sacrificing a catalytic cysteine residue.

Author contributions: M.F., B.D., R.P.H., and J.H. designed research, M.F. and B.D. performed research, M.F., B.D., R.P.H., and J.H. analyzed data; and M.F., B.D., R.P.H., and J.H. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

Data deposition: Atomic coordinates and structure factors have been deposited in the Protein Data Bank, www.pdb.org (PDB ID code 5UDQ for substrate-free, 5UNM for alternative substrate-free, 5UNW for NMN bound, 5UDS for ATP-bound, 5UDT for AMP-bound, 5UDU for Mn-bound, 5UDV for Fe-bound, 5UDW for Ni-bound, and 5UNZ for Zn-bound structures).

1M.F. and B.D. contributed equally to this work.

2To whom correspondence may be addressed. Email: hauinger@msu.edu or hujian1@msu.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704967114/-/DCSupplemental.
hexamer in solution (SI Appendix, Fig. S1). The hexamer is formed by two head-to-head trimers of three LarE subunits (trimer ABC ≈ trimer EFD; SI Appendix, Figs. S2 and S3 and Table S1) through the C-terminal “head domain.” A metal binding site was discovered at the center of the trimer bound to Asp231 from three chains (Fig. 2A). Crystal soaks revealed that this site can bind Mn, Fe, Ni, or Zn, with Ni and Zn also binding to surface residues (SI Appendix, Figs. S4 and S5). However, as Asp231 is not conserved (Fig. 3) and a D231R variant was as active as wild type (WT), it appears that this site is not catalytically relevant.

Domain Structure of LarE. LarE₆₆ possesses 276 residues plus 10 additional residues from the Streptag II and an Ala-Ser linker fused to the C-terminus. In the highest resolution structure [substrate-free protein at 2.09 Å, Protein Data Bank (PDB) ID code 5UDQ], residues 2–125 and 148–259 are modeled in all chains, except for a small gap (residues 172–175) in chain A. The protein contains 14 helices and seven strands (Fig. 4A) and, as predicted, consists of two domains: Residues 1–147, including several highly conserved proline residues, which are not present in LarE, whereas it does not contain a conserved Cys residue, which is absolutely required for catalysis by LarE. Collectively, the crystal structure suggests that LarE is a new member of the N-type ATP PPase family.

Because the C-terminal subdomain of GMP synthetase provides the key residues for binding the substrate xanthine monophosphate (XMP), particularly for interaction with the phosphate and the ribose moieties, we hypothesized that the C-terminal domain of LarE could exert a similar function. Of potential relevance, we noticed that a strong tetrahedral electron density appeared in the head domain of all LarE chains, associated with the linker connecting the two subdomains of GMP synthetase. This linker is characterized by several highly conserved proline residues, which are not present in LarE, whereas it does not contain a conserved Cys residue, which is absolutely required for catalysis by LarE. Collectively, the crystal structure suggests that LarE is a new member of the N-type ATP PPase family.

Because the C-terminal subdomain of GMP synthetase provides the key residues for binding the substrate xanthine monophosphate (XMP), particularly for interaction with the phosphate and the ribose moieties, we hypothesized that the C-terminal domain of LarE could exert a similar function. Of potential relevance, we noticed that a strong tetrahedral electron density appeared in the head domain of all LarE chains, associated with a positively charged surface composed of Ser180, Arg212, Arg214, Arg239, and, in some cases, Cys176 (Fig. 4C). Because this density appeared in all structures, even when no phosphate or sulfate was added during crystallization, we believe this region represents a
is associated with the three phosphate groups of ATP. The ATP-bound structure of LarE is nearly identical to that of the ligand-free protein, except that the previously disordered fragment (residues 126–147) harboring several highly conserved residues now folds into a helix, with Arg133 coordinating the α-phosphate of AMP (Fig. 5C). Interestingly, this segment appears to be unique to LarE, and is very different in GMP synthetases or other ATP PPases. In the *E. coli* GMP synthetase structure (PDB ID code 1GPM) (9), the equivalent segment is also disordered, while the *Homo sapiens* GMP synthetase (PDB ID code 2VXO) (12) shows a very different fold (SI Appendix, Fig. S6). We therefore postulate that this segment plays a specific role in LarE catalysis. For instance, Arg133 may stabilize the intermediate of the AMPylation reaction by neutralizing the negative charge developed in the transition state.

Substrate Binding to the C-Terminal Head Domain of LarE. We are particularly interested in how and where P2CMN binds to the protein. Because P2CMN is not commercially available, we conducted exhaustive trials to obtain a substrate homolog-bound structure and managed to solve the costructure of LarE with NMN by soaking with substrate-free crystals. NMN resembles P2CMN, but one carboxyl group in P2CMN is replaced by an amide group and the second carboxyl group is absent. The NMN-bound structure (Fig. 6A) revealed that Ser180, Arg212, Arg214, and Arg259 bind the phosphate moiety of NMN, confirming our previous hypothesis that the highly conserved anion binding site contributes to substrate binding. As shown in the *F*$_{o}$*F*$_{c}$ omit map, the strong electron density of the sugar ring enables us to model the structure without ambiguity, showing that the hydroxyl groups on the sugar ring form hydrogen bonds with an invariant Tyr184. The nicotinamide moiety appears to be more flexible with higher *B*-factors and less density fit compared with the rest of the molecule, although it may be at least partially stabilized by stacking with the side chain of Trp97. Potential reasons for this flexibility include high-affinity binding site for either phosphate or sulfate that is carried over from the purification. Comparison of LarE with the XMP-bound GMP synthetase structure (PDB ID code 2VXO) (12) reveals that the phosphate group of XMP is located close to (6.6 Å in the match shown) this tetrahedral density (SI Appendix, Fig. S8); therefore, we further postulate that this putative anion binding site corresponds to the binding site for the phosphate group of P2CMN, the substrate of LarE. Consistent with this proposal, the residues at this anion binding site, and even those in the secondary coordination sphere, are highly or universally conserved (Fig. 3), strongly indicating their key roles in LarE function. The occupation of this site by either phosphate or sulfate appeared to be crucial for crystallization, suggestive of a role in structural stabilization of LarE. This is probably due to the involved residues being part of a hydrogen bonding network that spans across the head domain.

ATP AMP Binding to the ATP PPase Domain of LarE. The ATP-bound structure of LarE was obtained by soaking the substrate-free crystals with ATP. The structure (Fig. 5A) reveals that ATP binds to the PP-loop in a conserved manner as found in other members of the N-type PPase protein family: The γ-phosphate of ATP is coordinated by the invariant residues of the SGGxDS motif (Ser25, Gly27, Gly28, Asp30, and Ser31), the ribose moiety forms hydrogen bonds with the backbone atoms of Gly123 and Ala24, and the adenine moiety is stabilized by hydrogen bonding with the backbone nitrogen and oxygen of Ala52. In addition, Mg$^{2+}$ is associated with the three phosphate groups of ATP, stabilizing a highly bent conformation. As a result, the bound ATP molecule is oriented with the α-phosphate positioned toward the C-terminal domain of LarE, where the substrate P2CMN is supposed to bind. Consistent with the importance of the SGGxs motif for LarE function, a D30A LarE variant showed that activity was abolished (7).

LarE cocrystallized with ATP/Mg$^{2+}$ formed AMP-bound LarE crystals (Fig. 5B). This result demonstrates the presence of ATP PPase activity and also suggests that AMP stabilizes the LarE structure more than ATP. AMP is bound to LarE similar to how ATP is bound, while the pyrophosphate is released and no longer observed in the structure. As a result, the AMP molecule lacks the direct interaction with the PP-loop residues seen for ATP. The AMP-bound structure of LarE shows that activity is abolished (7). ATP forms hydrogen bonds with the backbone atoms of Gly123 and Ala24, and the adenine moiety is stabilized by hydrogen bonding with the backbone nitrogen and oxygen of Ala52.
The NMN-bound structure enables us to model a P2CMN

Comparison of ATP-bound, AMP-bound, and substrate-free LarE
map is
and
of
B
β
no. 34
vol. 114
Substrate analog NMN binding to the C-terminal head domain of
and
can be efficiently reduced by
PNAS

Intermediate in the transition state. Notably, the flexible fragment
supports this reaction because the modeled carboxylic acid group
from protein to substrate. In the first step, a carboxyl group of
ATP, bound at the PP-loop motif, leading to release of the py-

poor stabilization of the amide group compared with the two
carboxyl groups in authentic P2CMN substrate or a requirement
for flexibility to perform the reaction with ATP and Cys176. An
alignment of LarE sequences from multiple species indicates that
all of the residues in the identified substrate binding site are highly
conserved or invariant, strongly supporting their key roles in LarE
function (Fig. 3). Notably, the NMN-coordinating residues are only
conserved in LarE sequences, and not in GMP synthetases. A
detailed structural comparison shows the latter enzyme uses a
different set of conserved residues for binding XMP (SI Appendix,
Fig. S8C). To further validate this substrate binding site experi-
mentally, we conducted site-directed mutagenesis to substitute
selected LarE residues and measured the activity of the W97A,
C176A, and R212A variants (Fig. 6f), with C176A LarE affecting a
known essential residue (7) and D231A LarE affecting a known
nonessential residue. As expected, the variant proteins affecting
the substrate binding site exhibited no detectable activity, con-
firming the importance of this newly identified structural region
of LarE.

Implications of the Structural Findings on the Catalytic Mechanism of LarE. The NMN-bound structure enables us to model a P2CMN molecule at the likely substrate binding site. By overlaying this model structure with the AMP-bound structure (Fig. 7a), we are able to propose a catalytic mechanism of LarE (Fig. 8) that includes three successive steps: (i) AMPylation of the substrate, (ii) formation of a substrate-LarE adduct, and (iii) sulfur transfer from protein to substrate. In the first step, a carboxyl group of P2CMN carries out a nucleophilic attack on the α-phosphate of ATP, bound at the PP-loop motif, leading to release of the py-

Fig. 5. Comparison of ATP-bound, AMP-bound, and substrate-free LarE
structures. ATP-bound structure of LarE (A; PDB ID code 5UDS) compared with
AMP-bound structure of LarE (B; PDB ID code 5UDT). The 2F_o-F_c maps are
shown as blue meshes at 1σ. Interacting residues are shown in stick mode.
Carbon atoms of ATP and AMP are depicted in purple and teal, respectively. An
Mg atom is shown as a green sphere, with its chelation represented as black
dashed lines. Hydrogen bonds are indicated as red dashed lines. (C) Comparison
of residues 122–148 loop in the absence (alternative substrate-free LarE PDB ID
code 5UNM ribbon in yellow) and presence of AMP.

Fig. 6. Substrate analog NMN binding to the C-terminal head domain of
LarE. (A) NMN-bound structure of LarE (PDB ID code 5UDR). The F_o-F_c map is
shown as green mesh at 2.5σ for the model before adding the ligand. Carbon
atoms of NMN are depicted in magenta. Hydrogen bonds are illustrated as red dashed lines. (B) Activity measurement of LarE variants com-
pared with WT and with the addition of just buffer without LarE protein. The
relative activity was the mean of three to nine repeats from up to three
independent purifications, and the error bar represents the SD.

transition upon AMP binding, which exposes the otherwise
blocked substrate binding site in the head domain in the
substrate-free structure (Fig. 5C and SI Appendix, Fig. S6 A and B).

The AMP-dependent conformational change implies that this
highly dynamic structural element plays an additional role in co-
ordinating ATP and substrate binding. In the second step, the
AMPylated substrate is suggested to be attacked by Cys176, located
only 5.1 Å away, forming a substrate/LarE adduct and re-
leasing AMP. Cys176 is known to be the residue that donates its
sulfur atom to P2CMN, and a substrate/LarE adduct was detected
previously using mass spectrometry (7). In the third step, LarE
sacrifices the sulfur atom of its Cys176 residue for substrate thio-
lation, leaving the enzyme with a dehydroalanine residue at this
position as demonstrated by mass spectrometry (7). Our structure
model suggests that Arg181 or Glu61, which are on the opposite
side of the Cys side chain from the substrate and located 4.7 or 5.7 Å
from this residue, respectively, may act as the base that abstracts
the Cα proton of Cys176. Notably, both residues are highly conserved
in LarE sequences from a variety of species. We conducted site-directed mutagenesis on the codons for Arg181, Glu61, and
Glu200, with the latter forming two hydrogen bonds with Arg181
(Fig. 7a). Both the R181K and E200Q variants showed no activity,
whereas the E61Q variant showed only a slight decrease in activity
(Fig. 7b). Therefore, the sulfur transfer most likely occurs through
a β-elimination reaction catalyzed by Arg181, assisted by Glu200.
Although Arg residues generally are not considered as good can-
didates for general bases due to their high pK_a (~12), catalytic Arg
residues have been suggested in enzymes from distinct families
(13). A common feature of these enzymes is that the Arg is
hydrogen-bonded with a carboxylate residue. Due to pK_a mis-
match, it is unlikely that the Arg pK_a can be efficiently reduced by
d a carboxylate group, but it has been proposed that proton exchange
promoted by the negatively charged carboxylate group may facili-
tate the Arg-involved reactions (13). Thus, while E200Q should
maintain a hydrogen bond with Arg181, the completely abolished
activity of this variant reinforces the opinion that the negative
charge of the carboxylate is critical for activation of the catalytic
Arg. Admittedly, formation of the thioester intermediate may lead
to a large conformational change in the active site so that the Cα
of Cys176 may be approached and deprotonated by a yet-to-be-
identified residue for elimination reaction. To complete the con-
version of P2CMN to P2TMN, the initial product must be relo-
cated to a second LarE molecule and the three reaction steps must
be repeated to allow for a second sulfur transfer. Transfer of the
intermediate containing a single sulfur atom may be facilitated by
the high-order oligomerization of LarE.

Proposed LarE mechanistic reaction scheme. PCTMN, pyridinium-3-carboxy-5-thiocarboxylic acid mononucleotide.

LarE, one of four proteins needed for LarA’s lactate racemase activity, catalyzes a key step in the biosynthesis of the P2TMN cofactor. In this work, we solved the crystal structures of LarE from *L. plantarum*, providing structural insights into the catalytic mechanism of this enzyme (Fig. 8). ATP binds to the conserved N-terminal ATP PPase domain primarily through the signature PP-loop motif, whereas the unique C-terminal domain defines an important functional region for substrate binding and thiolation.

The N-terminal domain of LarE shows remarkable similarity to the corresponding region of the ATP PPase domain of GMP synthetase, a representative of the N-type ATP PPase family. Therefore, we categorize LarE as a member of the N-type ATP PPase family. Detailed structural comparison of LarE with GMP synthetase reveals that the sulfur transferase has an additional highly conserved segment (residues 126–147) in the N-terminal ATP PPase domain and also coordinates the substrate at the C-terminal head domain in a markedly distinct way from GMP synthetase or any other known ATP PPase. These structural features strongly support the proposal that LarE is a new member of the N-type ATP PPase family.

The most remarkable feature making LarE stand out from the other enzymes with ATP PPase activity is the nucleophilic attack on the AMPylated substrate by the universally conserved Cys176. In the enzyme family of N-type ATP PPases, the AMPylated substrate is nucleophilically attacked by either an ammonia generated from glutamine (e.g., NAD synthetase, GMP synthetase, asparagine synthetase) or the amino group of a reactant (e.g., β-lactam synthetase, argininosuccinate synthetase). However, LarE is very unusual in using a Cys residue of the enzyme itself as the nucleophile for attacking the AMPylated substrate. In the current structural model, the sulfur atom of Cys176 is only 5.1 Å away from the carboxylic acid group of P2CMN (Fig. 7), providing a strong structural basis for the formation of the Cys176-mediated LarE-P2CMN adduct, which has been detected in previous mass spectrometry experiments (7). Still unclear is the question of how the thiol group of Cys176 is activated to act as a nucleophile. One possibility is that the phosphate group of the substrate, which is close enough to form a hydrogen bond with the thiol, may play a role as a base, thus increasing the nucleophilicity by at least partially deprotonating the thiol group.

The LarE-P2CMN adduct decomposes by breaking the C-S bond of the Cys, a striking step that inactivates LarE by replacing the catalytic Cys with a dehydroalanine residue, limiting the enzyme to a single cycle of reaction. Under physiological conditions, the sulfur transfer reaction is most likely catalyzed by a base-catalyzed β-elimination mechanism involving deprotonation of the Cα of Cys176. Arg181 is a potential residue playing such a role. Proton exchange of Arg181 with a carboxylate residue, which would be required in order for the residue to act as a general base (13), could be realized by Glu200. The location of Arg181 on the opposite side of the thiol group from the substrate would be close to the Cα of Cys176 if a 1- to 2-Å displacement of the flexible linker harboring Cys176 were to occur. Because of the key roles of the Cα (ACxxSRβ31) motif, we suggest that proteins with an N-terminal ATP PPase domain and a C-terminal domain containing this motif are examples of LarE, as described here (SI Appendix, Figs. S9 and S10). In a previous bioinformatic study (1) analyzing 1,087 available bacterial and archaeal genomes, 270 (25%) contained a LarE homolog for which nine (from Lactobacillales or Bacillales) are closely related to *L. plantarum* LarE (SI Appendix, Fig. S11A). The remaining 261 homologs found in Actinobacteria, α-Proteobacteria, Clostridia, Cyanobacteria, δ-Proteobacteria, Euryarchaeota, and Spirochaetes harbor a slightly different, but highly conserved, “Cxx(S/T)R” motif, and a “CxxC” motif replacing the conserved Trp97 at the active site of *L. plantarum* LarE (SI Appendix, Fig. S11A). As many of the corresponding larE genes were found in an operonic structure with *larB* and *larC* (1), they most probably also encode LarE proteins performing the same overall reaction. One example is the LarE from *Thermoaerobacterium thermosacharolyticum*, where the LarA *T. thermosacharolyticum* (LarAp1) homolog has already been demonstrated to be a lactate racemase (1). LarEα and LarEβ share 38% sequence identity, and a model of LarEβ based on the *L. plantarum* structure shows an active site with three conserved cysteines instead of one (SI Appendix, Fig. S11B). It will be interesting to test whether these...
homologs also sacrifice their catalytic cysteine or if they use an alternative sulfur donor.

Taken together, the series of LarE structures presented in this work provides a structural basis supporting a novel catalytic mechanism of LarE, a sulfur insertase assigned as a new member in the N-type ATP PPase family. LarE is therefore the second identified enzyme sacrificing its catalytic Cys after thiamine thiazole synthase of Saccharomyces cerevisiae, THI4p (14). Conversion of the catalytic Cys into dehydroalanine makes LarE a single-turnover enzyme, which is fundamentally different from the conversion of Cys into formylglycine by the well-studied sulfatases, where the posttranslational modification of the catalytic cysteine is absolutely required for catalysis (15). Although we have demonstrated LarE does not require other enzymes for its reaction in the in vitro assay (7), we cannot rule out that LarE might be regenerated by other enzymes in vivo. This unsolved issue and others, such as the detailed processes of sulfur transfer and substrate relocation to a second subunit for catalyzing the second sulfur insertion, warrant further investigation of this very unusual enzyme.

Materials and Methods

Genes, Plasmids, and Cloning. Plasmid pGIR076, containing L. plantarum larE along with a sequence encoding a C-terminal Strep II tag (ASWSHPQEK; IBA), was constructed by digestion of plasmid pGIR072 (1) with Ncol and HindIII ligation into pBADHisA. Site-directed mutagenesis of the gene encoding Strep II-tagged WT LarE was performed using a QuikChange mutagenesis kit (Agilent). All of the constructs have been verified by DNA sequencing. Plasmid and primer details are provided in SI Appendix, Table S2.

L. lactis LarE Overexpression, Purification, and Crystallization. L. lactis cells were transformed with pGIR072, pGIR082, or pGIR700; grown in M17 broth supplemented with glucose; and (for those containing pGIR072) used for LarE purification as previously described (1, 7). Details about these and the E. coli strains are provided in SI Appendix, Table S2. The selenomethionine-containing LarE was obtained by a method described elsewhere (16); details are provided in SI Appendix, Table S3. The crystallization condition is shown in SI Appendix, Table S3.

E. coli Arctic-Express LarE Overexpression, Purification, and Crystallization. Plasmid pGIR076 and pBAD-based plasmids carrying the ampicillin gene were transformed into E. coli Arctic-Express (DE3) cells (Agilent). LarE transformation and expression followed the Arctic-Express and pBAD protoco-ls, and Strep-tactin purification was performed according to the IBA manual. Details and slight modifications are provided in SI Appendix. Protein concentrations were measured using the Bradford (Bio-Rad) method. To assess the oligomeric state in solution, LarE was analyzed by chromatography on a Superdex-200 increase 10/300 GL column at 4 °C (GE Healthcare, Inc.) that had been equilibrated with 100 mM Tris·HCl (pH 7.5) and 300 mM NaCl, and its elution profile was compared with the standards. Size exclusion purification was not required for the activity assays or crystal formation. The crystallization and soaking conditions are listed in detail in SI Appendix, Table S3.

Diffraction Data Collection, Structure Determination, and Analysis. X-ray diffraction data were collected at the Advanced Photon Source LS-CAT beamlines (21-ID-D, 21-ID-F, and 21-ID-G) and at beamlines S0.1 and S0.2 at the Berkeley Center for Structural Biology Advanced Light Source facility. Datasets were processed with xdsapp2.0 (17) or iMosflm (18), and merging and scaling were done using aimless (19). The phase of a selenomethionine-substituted crystal was solved using single-wavelength anomalous dispersion in Phenix (20) at 3.3 Å, and a four-particle replacement was used for all subsequent datasets. Model building and refinement were conducted in Coot (21) and Phenix (20). Statistics for the datasets are listed in SI Appendix, Tables S4–S7. Structure figures were created with UCSF Chimera (22). The hexamer was examined by PDBsum (23); details are provided in SI Appendix, Fig. S2 and Table S1. Sequence alignments and phylogenetic tree representation used Clustal (24) and Dendroscope 3 (25), and homology modeling used SWISS-MODEL (26) (Fig. 3 and SI Appendix, Figs. S9–S11).

LarE Activity Assay. LarE activity was assessed by measuring the lactate racemase activity of LarEα, a LarA homolog from T. thermosaccharolyticum. The method was modified based on a protocol described earlier (1, 7) (details are provided in SI Appendix).

ACKNOWLEDGMENTS. We thank Joel Rankin for assistance with establishing LarE purification from Arctic-Express cells and developing the LarE assay, Dexin Sui for assistance with mutagenesis, and Tuo Zhang for help with crystallographic work. This work was supported by National Science Foundation Grant CHE-1516126 (to R.P.H. and J.H.).