"Faster G0W0 implementation for more accurate photovoltaic material design"

Laflamme Janssen, Jonathan ; Rousseau, Bruno ; Bérubé, Nicolas ; Geadah-Antonius, Gabriel ; Côté, Michel

ABSTRACT

Density-functional theory (DFT) is currently the ab initio method most widely used to predict electronic energy levels of new molecules. However, approximations intrinsic to the theory limit the accuracy of calculated energy levels to about ±0.5 eV. More efficient theoretical design of molecules and polymers of interest to photovoltaic applications could be achieved if more precise ab initio methods were available. The G0W0 approach is an ab initio method that provides such an enhanced precision, with predicted energy levels precise to about ±0.05 eV. However, such calculations are currently prohibitive for systems with more than a few hundreds of electrons, thus limiting their use in the photovoltaic community. What limits calculations to this system size is the need in current implementations to invert the dielectric matrix and the need to carry out summations over conduction bands. This poster presents a strategy to avoid both of these bottlenecks. Preliminary results will be presented.

CITE THIS VERSION

Laflamme Janssen, Jonathan ; Rousseau, Bruno ; Bérubé, Nicolas ; Geadah-Antonius, Gabriel ; Côté, Michel. Faster G0W0 implementation for more accurate photovoltaic material design. Annual convention of the ‘Regroupement Québécois pour les Matériaux de Pointe’ (Montreal, Canada, 25/05/2012). http://hdl.handle.net/2078.1/155449

DIAL is an institutional repository for the deposit and dissemination of scientific documents from UCLouvain members. Usage of this document for profit or commercial purposes is strictly prohibited. User agrees to respect copyright about this document, mainly text integrity and source mention. Full content of copyright policy is available at Copyright policy

Le dépôt institutionnel DIAL est destiné au dépôt et à la diffusion de documents scientifiques émanant des membres de l'UCLouvain. Toute utilisation de ce document à des fins lucratives ou commerciales est strictement interdite. L'utilisateur s'engage à respecter les droits d'auteur liés à ce document, principalement le droit à l'intégrité de l'œuvre et le droit à la paternité. La politique complète de copyright est disponible sur la page Copyright policy

Available at: http://hdl.handle.net/2078.1/155449 [Downloaded 2020/09/09 at 13:32:37]
Faster G_0W_0 implementation for more accurate photovoltaic material design

Jonathan Laflamme Janssen, Bruno Rousseau, Nicolas Bérubé, Vincent Gosselin, Gabriel Antonius, and Michel Côté
Université de Montréal
Regroupement Québécois pour les Matériaux de Pointe (RQMP)

Abstract
Density-functional theory (DFT) is currently the ab initio method most widely used to predict electronic energy levels of new molecules. However, approximations intrinsic to the theory limit the accuracy of calculated energy levels to about 20.5 eV. More efficient theoretical design of molecules and polymers of interest to photovoltaic applications could be achieved if more precise methods were available. The G_0W_0 approach is an ab initio method that provides such an enhanced precision, with predicted energy levels accurate to about ±0.05 eV. However, such calculations are currently prohibitive for systems with more than a few tens of electrons, thus limiting their use in the photovoltaic community. What limits calculations to this system size is the need in current implementations to invert the dielectric matrix and the need to carry out summations over conduction bands. This poster presents a strategy to avoid both of these bottlenecks.

Solution to bottleneck 1
Sternheimer equation

\[P(\omega) = \sum \left[\frac{1}{\omega - (E_i - E_f)} - \frac{1}{\omega + (E_i - E_f)} \right] |\varphi_i\rangle \langle \varphi_f| \]

Eliminating \sum_f

\[\langle r^*_i | E_{GW0} | r_f \rangle = \sum_{\omega, \pm} \left[\frac{|\varphi_i\rangle \langle \varphi_f|}{\omega - \epsilon_i + \pm \omega} \right] \]

\[\langle \tilde{H} - \epsilon_i + \pm \omega | r_f \rangle = \langle r^*_i | E_{GW0} | r_f \rangle \] (Sternheimer’s equation)

Implementation of solution
1) H is sparse \Rightarrow iterative method
2) $H - \epsilon_i \pm \omega$ can be singular \Rightarrow SQMR instead of CG

Solution to bottleneck 2
Lanczos algorithm

Ideally, $\tilde{\epsilon}(\omega)$ is expressed in a planewave basis. Here, we decrease the size of the matrix by constructing a basis that automatically focuses on the relevant subspace:

\[\{ |\phi_i\rangle, \tilde{\epsilon}(\omega)|\phi_i\rangle, \tilde{\epsilon}^2(\omega)|\phi_i\rangle,, \tilde{\epsilon}^N(\omega)|\phi_i\rangle \} \]

and then orthonormalize it to obtain the Lanczos basis:

\[\{ |\xi_i(\omega)\rangle, |\xi_i(\omega)\rangle, |\xi_i(\omega)\rangle,, |\xi_N(\omega)\rangle \} \]

which is substantially smaller than a planewave basis of equivalent accuracy.

Example : silane

<table>
<thead>
<tr>
<th></th>
<th>Conventional implementation</th>
<th>Present implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\epsilon}(\omega)$</td>
<td>6000 x 6000</td>
<td>200 x 200</td>
</tr>
<tr>
<td>N</td>
<td>3000</td>
<td>-</td>
</tr>
<tr>
<td>CPU time</td>
<td>~48h</td>
<td>~8h</td>
</tr>
</tbody>
</table>

Conclusion
- DFT calculations are useful for sorting a large group of candidate polymers.
- Further refinement of calculations using G_0W_0 would be desirable, but unwieldy with current implementations due to 2 bottlenecks:
 1. The sum over conduction states
 2. The inversion of the dielectric matrix
- We assess these bottlenecks using:
 3. Sternheimer’s equation
 4. Lanczos algorithm
- and obtain a 6-fold increase in speed