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Abstract

In this paper, a locally stationary process is proposed using a Smooth Localized Complex Ex-
ponential (SLEX) basis, whose spectrum is assumed to be smooth in both time and frequency. A
smoothing Spline ANOVA (SS-ANOVA) is used to estimate and make inference on the time-varying
log-spectrum. This approach allows the time and frequency domains to be modeled in an unified
approach and jointly estimated. Because the SLEX basis is orthogonal and localized in both time
and frequency, our method has good finite sample performance. It also allows for deriving desirable
asymptotic properties. Inference procedures such as confidence intervals and hypothesis tests pro-
posed for the SS-ANOVA can be adopted for the time-varying spectrum. Because of the smoothness
assumption of the underlying spectrum, once we have the estimates on a time-frequency grid, we
can calculate the estimate at any given time and frequency. This leads to a high computational
efficiency as for large data sets we only need to estimate the initial raw periodograms at a much
coarser grid. We present simulation results and apply our method to an EEG data recorded during
an epileptic seizure.
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1 Introduction

Spectral analysis has been an important tool for time series analysis with wide range of applications.

Traditional methods are based on the assumption of second-order stationarity. However, this assump-

tion seldom holds in real applications and is only approximately valid for series of very short duration.

Recent developments relaxed this assumption to a locally stationary setting (Dahlhaus, 1997; Adak,

1998; Ombao et al., 2001, 2002) in which the spectrum is assumed to be changing slowly over time,

and the time series can be approximated by a piecewise stationary time series. The limitations of these

methods are: first, their finite sample estimates are not smooth in time because their time varying
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spectrum is only asymptotically tied to a smooth slowly varying function in time; second, except for

the parametric approach of Dahlhaus (1997), estimation in the frequency domain is conditional on the

segmentation in the time domain, and therefore prevent the joint estimation in both domains in the

nonparametric approaches; third, nonparametric inference is difficult.

In this paper, we propose a smoothing spline tensor product model for a time varying log-spectrum

of a locally stationary process. The underlying transfer function and hence the spectrum is assumed

to be smooth in time and frequency. This method allows simultaneous smoothing in both domains,

and is computationally efficient. Inference procedures developed in the context of smoothing spline

ANOVA (SS-ANOVA) (Gu and Wahba, 1993b; Guo, 2000) can be adopted for this model, offering the

possibility for confidence regions and for tests (on stationarity, among others).

Our specific motivation comes from the interest in studying how seizures are generated in epileptic

patients. We are interested in learning how the spectrum changes over time, which will provide us

information to eventually predict the onset of a seizure. Figure 1.1 is an electroencephalograms (EEG)

data recorded during an epileptic seizure. It can be seen that the power builds up until the seizure

erupts, and the energy then gradually dies out. The assumption of stationarity does not hold in such

applications, and a locally stationary model is more reasonable. Another challenge in modeling EEG

data is the extreme computational demand, as tremendous amount of data are collected over time.

Some initial data processing is usually needed to reduce the problem to a manageable scale. This

also motivates us to model the spectrum of the underlying process as a continuous smooth function

in both time and frequency. Then its interpretation remains the same across different subsamples in

the time-frequency plane, whereas an estimate that is conditional on a chosen time segmentation has

interpretation only on this chosen time-frequency grid. We will return to this application in Section 6.

Some of the recent developments in time-dependent spectral analysis can be classified as 1) local

Fourier basis approaches (Dahlhaus, 1997; Neumann and von Sachs, 1997), and 2) orthogonal basis

approaches (Ombao et al., 2001, 2002), to name but a few. In the local Fourier basis approach,

Dahlhaus (1997) extended the Cramér representation to include a time varying transfer function, and

used a parametric approach to estimate its spectral function. Neumann and von Sachs (1997) used a

tensor product wavelet model to estimate the spectrum of a locally stationary process. Their method is

applied on very localized Fourier periodograms to avoid a preliminary segmentation of the time series.
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Figure 1.1: EEG data collected during an epileptic seizure. The sampling rate is 100 Hertz. The total
number of time points T = 20480

Although this is conceptually very appealing, their final estimates suffer from a high variability (even

for comparatively large sample sizes) and hence the lack of allowing for reliable inference.

In the orthogonal basis approach of Ombao et al. (2001, 2002), they proposed a discrete time SLEX

model in which the Smooth Localized Complex Exponential (SLEX) basis was used to represent the

time varying spectrum. A Best Basis Algorithm (BBA) was used to select the optimal segmentation.

Each final segment is assumed to be stationary and the traditional frequency domain analysis can

be done within a segment. SLEX bases being orthogonal in time and frequency allowed to establish

asymptotic properties. Along this line of development, in this paper we propose a new SLEX process

whose spectrum is smooth in both time and frequency and use smoothing spline ANOVA (SS-ANOVA)

to estimate its log-spectrum. Our model is distinguished from Ombao et al. (2002) (termed discrete

SLEX model) in the following aspects: 1) our spectrum is defined for any time-frequency, while the

estimated spectrum of the discrete SLEX model only has interpretation at the final time-frequency

grid given by the BBA; 2) we make the smoothness assumption explicitly and therefore our estimate

is smooth even in finite samples, while the estimate in the discrete SLEX model is obtained at each

stationary block in the selected time-frequency grid and hence is not smooth; 3) our approach models

the log-spectrum instead of the spectrum, which guarantees positivity and produces stable estimates,
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4) our approach allows joint nonparametric estimation in time and frequency, while in the existing

SLEX method the estimate in the frequency domain is conditional on the segmentation in the time

domain; and 5) existing inference procedures such as Bayesian confidence intervals (Wahba, 1983) and

generalized likelihood ratio test (Guo, 2000) can be adopted for our approach, while inference in the

discrete SLEX model is difficult and needs to resort to computationally intensive methods such as the

bootstrap (Ombao et al., 2000).

Our method can be viewed as an extension of Wahba (1980) to a locally stationary process. The key

idea in Wahba (1980) is that the periodograms at different Fourier frequencies of a stationary time series

are asymptotically independent, and the asymptotic distribution of a periodogram is the corresponding

spectrum times a chi-square distribution. Therefore the log-periodograms can be modeled as a signal-

plus-noise model, and the distribution of the errors is approximately Gaussian. Then smoothing splines

can be used to estimate the log-spectrum. The direct extension of this approach to a locally stationary

process based on ordinary Fourier basis functions is difficult as the Fourier basis is not local in time.

We therefore need to first define a locally stationary time series model in terms of the SLEX basis that

is orthogonal and localized in both time and frequency. This provides a way to explicitly calculate the

local SLEX periodograms which are further modeled by a smoothing spline ANOVA model (Gu and

Wahba, 1993a).

The rest of the paper is structured as follows: in Section 2, we define our models; in Section 3,

we discuss the estimation of the log-spectrum. The inference and model selection are to be found in

Section 4. Some simulation results are given in Section 5. An application to the EEG data is used

as an illustration in Section 6. We conclude this paper with some remarks in Section 7. Proofs are

deferred to the Appendix.

2 The Model

In this section, we introduce our locally stationary time series model and the tensor product model for

the log-spectrum.
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2.1 Locally Stationary Process Model

The following definition is a modified version of Dahlhaus (1997) model where the original sequence of

functions A0
t,T is replaced by a smooth two dimensional function AD(ω, t/T ) in frequency and time:

Definition 2.1 A zero-mean stochastic process {XD
t , t = 1, · · · , T} is called locally stationary if it has

the following representation:

XD
t =

∫ 1

0
AD(ω, t/T ) exp(i2πωt)dZ(ω), (2.1)

where

1. Z(ω) is a zero-mean orthogonal-increment process on [0, 1] with Z(ω) = Z(1− ω), Z is the con-

jugate of Z, cum{dZ(ω1, · · · , dZ(ωk)} = ∆(
k
∑

j=1
ωk)Λk(ω1, · · · , ωk−1)dω1 · · · dωk, where cum{· · · }

denotes the cumulant of k-th order; Λ1 = 0,Λ2(ω) = 1, |Λk(ω1, · · · , ωk−1)| ≤ Ck, Ck is a constant

and ∆(ω) =
∞
∑

j=−∞
δ(ω + j) is the period 2π extension of the Dirac delta function.

2. The transfer function AD(ω, u) is continuous in (ω, u) ∈ [0, 1] × [0, 1], AD(ω, u) = AD(1− ω, u).

It is also a periodic function w.r.t. ω with period 1.

3. The time-dependent spectral function is defined as f D(ω, u) = |AD(ω, u)|2 for (ω, u) ∈ [0, 1]×[0, 1].

This representation does not provide us a way to directly calculate time-varying periodograms be-

cause the Fourier basis are not localized in time. We therefore introduce the following locally stationary

time series model using SLEX vectors.

First we partition the time interval into M blocks not necessarily of equal sizes. Let 1 = α1 <

α2 · · · < αM < αM+1 = T be the partition points, Bj = {αj , αj + 1, · · · , αj+1 − 1} be the jth block

and Sj = αj+1 − αj be the size for the block Bj. Let {εj , j = 1, · · · ,M + 1} be integers such that

(αj− εj, αj + εj), j = 1, · · · ,M +1 are disjoint. For each j, the SLEX basis for the block Bj are defined

as the following:

φj(ω, t) = bj
+(t) exp(i2πωt) + bj

−(t, ω) exp(−i2πωt), (2.2)

where

bj
+(t) = |r{(t− αj)/εj}|

2|r{(αj+1 − t)/εj+1}|
2,

bj
−(t, ω) = r{(t− αj)/εj}r{(αj − t)/εj} exp(4πiαjω)

−r{(t− αj+1)/εj+1}r{(αj+1 − t)/εj+1} exp(4πiαj+1ω).
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and where r(t) is a rising cutoff function. For more details about the construction of the SLEX vectors

and rising cutoff function, see Wickerhauser (1994). In our simulations, we use

r(t) =











0 if t < −1,

sin[π/4{1 + sin(πt/2)}] if − 1 ≤ t ≤ 1,

1 if t > 1.

Both bj
+(t) and bj

−(t, ω) have supports for t ∈ [αj − εj , αj+1 + εj+1], which means that the supports of

φj(ω, t) and φj+1(ω, t) have an overlap of length 2εj+1. Although these supports are overlapped, the

SLEX vectors are orthogonal over time.

The Balian-Low theorem states that there does not exist a smooth taper such that the tapered

Fourier vectors are simultaneously orthogonal and localized in time and frequency. The SLEX vectors

evade the obstruction, since they are obtained by applying a projection operation on the Fourier vectors,

which is equivalent to applying two smooth windows on the Fourier vectors and its conjugate. However,

the window bj
−(t, ω) is not a regular taper, since in general it depends on both time and frequency.

For a given SLEX basis, we can then define a SLEX locally stationary process:

Definition 2.2 A zero-mean stochastic process {XS
t , t = 1, · · · , T} is called SLEX locally stationary

if it has the following representation:

XS
t =

M
∑

j=1

∫ 1

0
AS(ω, t/T )φj(ω, t)dZ(ω), (2.3)

where

1. the definition of Z(ω) is the same as defined in Definition 2.1.

2. The transfer function AS(ω, u) is continuous in (ω, u) ∈ [0, 1] × [0, 1], AS(ω, u) = AS(1− ω, u).

It is also a periodic function w.r.t. ω with period 1.

3. The time-dependent spectral function is defined as f S(ω, u) = |AS(ω, u)|2 for (ω, u) ∈ [0, 1]×[0, 1].

Assumption 2.1 The transfer function AS(ω, u) has up to kth (k ≥ 1) order continuous partial

derivatives w.r.t. ω and u.

Remarks
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1. The Definition 2.2 explicitly defines a projection of a locally stationary process onto the SLEX

basis, which is simultaneously orthogonal and localized in time and frequency. This provides a

way to calculate the local periodograms (see Section 3 for details).

2. In our model, the transfer function and spectral function are continuous and smooth in both time

and frequency. They have their interpretation on any given time-frequency grid. This is different

from the discrete SLEX model (Ombao et al., 2002), where, for finite sample size, the transfer

function is piecewise constant in time and only has interpretation on the chosen time-frequency

grid.

2.2 Relationship with Dahlhaus Model

In this section, we discuss the relationship between our SLEX model and the modified Dahlhaus model.

Theorem 2.1 is an extension of Ombao et al. (2002) while Theorem 2.2 gives new insights.

Theorem 2.1 (1) For a SLEX time series {XS
t , t = 1, · · · , T} given by Definition 2.2 with transfer

function AS(ω, u), there exists a Dahlhaus locally stationary process {XD
t , t = 1, · · · , T} with same

transfer function such that

T−1
T

∑

t=1

E|XS
t −XD

t |
2 = O{max(Sj)/T} + O(T−1) + O{max(εj)/min(Sj)},

as T →∞, max(Sj)/T = o(1), max(εj)/min(Sj) = o(1).

(2) Conversely, given a Dahlhaus process {XD
t , t = 1, · · · , T} with transfer function AD(ω, u), there

exists a SLEX time series {XS
t , t = 1, · · · , T} with same transfer function, such that

T−1
T

∑

t=1

E|XS
t −XD

t |
2 = O{max(Sj)/T} + O(T−1) + O{max(εj)/min(Sj)},

as T →∞, max(Sj)/T = o(1), max(εj)/min(Sj) = o(1).

Theorem 2.2 Let (Xt, t = 1, · · · , T ) be a locally stationary process having both the Dahlhaus and

SLEX representations:

Xt =
∫ 1
0 AD(ω, t/T ) exp(i2πωt)dZD(ω),

=
M
∑

j=1

∫ 1
0 AS(ω, t/T )φj(ω, t)dZS(ω).
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If the transfer functions AD(ω, u) and AS(ω, u) have continuous partial derivatives w.r.t. ω and u,

then as T →∞, min(Sj) →∞, max(ε2
j )/min(Sj) → 0 and max(S2

j )/T → 0,

|fD(ω, u)− fS(ω, u)| → 0.

Remarks

1. Theorem 2.1 states that if the Dahlhaus process and the SLEX process are generated from the

same transfer function, then they are asymptotically equivalent.

2. Theorem 2.2 states that if the time series is generated from a Dahlhaus process and we use

a SLEX model to estimate the spectrum, the SLEX spectrum converges to the true (i.e. the

Dahlhaus) spectrum.

3. From Theorem 2.2, although we can choose different rising cutoff functions and different partitions

of the time series to obtain the SLEX vectors, the spectral functions will always converge to the

true spectral function, which is unique (Dahlhaus, 1996).

For the rest of the paper, we will use the model of a SLEX process and use the SS-ANOVA for

estimation and inference of its log-spectrum. We suppress the superscript S when there is no confusion.

2.3 Tensor Product Model for Logarithm Spectrum

We next introduce the tensor product model for the log-spectrum. For simplicity, we focus on cubic

splines, although our method works for splines of any orders. Similar to Wahba (1980), we use the

logarithm of spectrum log{f(ω, u)} = g(ω, u), which is periodic w.r.t.ω with period 1, g(ω, u) =

g(1 − ω, u) and has kth (k = 2 for cubic splines) order continuous partial derivatives w.r.t. ω and u.

To deal with the curse of dimensionality, we adopt the tensor product model proposed by Gu and

Wahba (1993a). We first need to define the reproducing kernels (RKs) for time and frequency domains,

see Aronszajn (1950) for details of the reproducing kernel Hilbert space (RKHS)).

In the frequency domain, since g1(ω) = g(ω, ·) is periodic with period 1, it has the following Fourier

expansion:

g1(ω) ∼ a0 +
∑

j 6=0

aj exp(i2πωj).
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So the RKHS W1 for ω can be decomposed as

W1 = {1} ⊕H1,

where the reproducing kernel (RK) R1 for H1 is the following:

R1(ω1, ω2) = −k4(ω1 − ω2),

where k4(x) = B4(x)/4!, B4(·) is the fourth order Bernoulli polynomial (see Wahba (1990) for details).

In the time domain, g2(u) = g(·, u) has a continuous second derivative. Its corresponding RKHS

W2 has the following decomposition:

W2 = {1} ⊕ {u− 0.5} ⊕H2.

The RK R2 for RKHS H2 is defined as follows:

R2(u1, u2) = k2(u1)k2(u2)− k4(u1 − u2),

where k2(x) = B2(x)/2! and B2(·) is the second order Bernoulli polynomial.

The full tensor product RKHS for (ω, u) is given by:

H = W1 ⊗W2,
= [{1} ⊕H1]⊗ [{1} ⊕ {u− 0.5} ⊕H2],
= {1} ⊕ {u− 0.5} ⊕H1 ⊕H2 ⊕ {H1 ⊗ (u− 0.5)} ⊕ {H1 ⊗H2}.

The RK R3(., .) for H3 = H1 ⊗ (u− 0.5) is given by

R3{(ω1, u1), (ω2, u2)} = R1(ω1, ω2)(u1 − 0.5)(u2 − 0.5),

and RK R4 for H4 = H1 ⊗H2 is given by

R4{(ω1, u1), (ω2, u2)} = R1(ω1, ω2)R2(u1, u2).

Correspondingly, the logarithm of the spectral function has the following ANOVA decomposition:

g(ω, u) = β1 + β2(u− 0.5) + g1(ω) + g2(u) + g3(ω, u) + g4(ω, u), (2.4)

where β1 + β2(u − 0.5) is the linear trend, g1(ω) (whose RK is R1(., .)) is the smooth periodic main

effect for frequency, g2(u) (whose RK is R2(., .)) is the smooth main effect for time, g3 (whose RK
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is R3(., .)) is smooth in frequency and linear in time, and g4 (whose RK is R4(., .)) is the interaction

between the two smooth terms in time and frequency. This model includes time varying AR and MA

models as special cases, and we refer to a concrete example in Section 5.

For a particular application, a full model (2.4) may not be needed and a more parsimonious model

can be obtained by setting some terms to zero. This can be done through sequentially testing one term

at a time using the GML ratio test proposed by Guo (2000), which will be reviewed in Section 4.2.

3 Estimation

To obtain the estimate of the underlying spectrum, we use a two-stage approach: first, obtain the

local periodograms using the SLEX transformation, and then use a SS-ANOVA model to estimate the

log-spectrum which is continuous and smooth in both time and frequency.

3.1 SLEX Periodograms

The SLEX coefficients on the block Bj are defined as:

θ̂j,k,T =
1

√

Sj

T
∑

t=1

Xtφj(ωk, t). (3.1)

Further, the SLEX periodogram is defined as

α̂j,k,T = |θ̂j,k,T |
2, (3.2)

where ωk = k/Sj , k = 1, · · · , Sj .

Because of the local stationarity, the time series is approximately stationary in each small block.

The spectrum at the middle point of each block can be estimated by the average of the time-varying

spectrum in the block. This is the same as treating the time series in the block as stationary in

calculating the periodogram for the middle point.

The initial blocking is only used to obtain the raw periodograms, which is not critical in the final

estimate because of the second stage estimation using SS-ANOVA and the smoothness assumption on

the underlying spectrum. To calculate the SLEX periodograms, we first divide the time series into

adjacent disjoint blocks which can have different lengths. The chosen frequencies in each block can be

a subset of the Fourier frequencies. The middle points of the blocks and the chosen frequencies form
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a time-frequency grid, whose periodograms are calculated using (3.2). The next lemma is similar to

Theorem 5.2 and Corollary 5.1 in Ombao et al. (2002).

Lemma 3.1 Under the SLEX model (2.3), the periodograms α̂u,ω,T given by 3.2 are asymptotically

independent and distributed as

α̂j,k,T ∼

{

f(ωk, uj)χ
2
2/2 if ωk 6= 0, 1/2,

f(ωk, uj)χ
2
1 if ωk = 0, 1/2,

(3.3)

as T → ∞, min(Sj) → ∞, max(ε2
j )/min(Sj) = o(1) and max(S2

j )/T = o(1), where uj is the middle

point of the block Bj.

This result is the same as for the classical Fourier transform of a stationary process. So when taking

logarithm on both sides of Equation (3.3),

log(α̂j,k,T ) ≈ log{f(ωk, uj)}+ δjk,

where δjk are asymptotically independent with mean Cωk
and variance σ2 = π2/6, where Cωk

is the

Euler Mascherni constant, and −Cωk
= γ = 0.57721 · · · for ωk 6= 0, 1/2 and C0 = C1/2 = −(ln 2+γ)/π.

Let Yj,k = log(α̂j,k,T )− Cωk
. Then

Yj,k ≈ g(ωk, uj) + εjk, (3.4)

where εjk are asymptotically independent with zero mean and variance π2/6.

3.2 Spline Estimation

Let γ = (ω, u) be a frequency-time point, Γ = (γi)
n
i=1 be the selected frequency-time grid to calculate

the observations Y = (Yi, i = 1, · · · , n)T given by (3.4). As the estimation is the same for any sub-

models by setting some terms of the full model (2.4) to zero, we only describe the estimation for the

full model. The estimation is to find g ∈ H which minimizes

1

n

n
∑

i=1

{Yi − g(γi)}
2 +

4
∑

j=1

λj ||Pjg||
2, (3.5)

where λj , j = 1, · · · , 4 are smoothing parameters and Pj , j = 1, · · · , 4 are projection operators on

RKHSs Hj , j = 1, · · · , 4.
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Let λj = λ/θj , j = 1, · · · , 4, Qθ =
4
∑

j=1
θjRj(Γ,Γ). Gu (1989) and Gu and Wahba (1993a) gave the

solution to (3.5). Conditional on the smoothing parameters, the estimates ĝ(Γ) at these design points

Γ are given by

ĝ(Γ) = Wd + Qθ
c, (3.6)

where W = (1, ui − 0.5)n
i=1. The coefficients c and d = {β1, β2}

T are determined by

(Qθ + nλI)c + Wd = Y ,
W T

c = 0.
(3.7)

The estimate of any given time-frequency point γ ′ = (ω′, u′) is given by

ĝ(γ′) = W ′
d + c

T
4

∑

j=1

θjRj(Γ, γ′), (3.8)

where W ′ = (1, u′ − 0.5).

The smoothing parameters λ and θj, j = 1, · · · , 4 can be chosen by GCV (generalized cross vali-

dation), GML(generalized maximum likelihood) or URE (unbiased risk estimate) to minimize corre-

sponding criteria. For GCV, the criterion is

V (λ) = [1/nZ
T (Qθ + nλI)−2

Z]/[1/n tr(Qθ + nλI)−1]2;

for GML, it is

M(λ) = [ZT (Qθ + nλI)−1
Z/n]/[det(Qθ + nλI)−1]1/(n−2);

for URE, it is

U(λ) = ||{I −A(λ)}y||2 + 2σ2 trA(λ)/n,

where Z = F T
2 Y , F1, F2, T is the QR decomposition for W : W = (F1, F2)(

T
0

). In our simulations,

GML outperforms the other criteria, and therefore is recommended.

4 Inference and Model Selection

In this section, we discuss the inference and model selection for our model.

12



4.1 Bayesian Confidence Intervals

Using the Bayesian model (Wahba, 1983), Gu and Wahba (1993b) derived the Bayesian confidence in-

tervals for SS-ANOVA. For any given time-frequency point γ ′, ĝ(γ′) is the posterior mean of E{g(γ ′)|Y }

with d = {β1, β2}
T having diffuse priors. The corresponding posterior variance var{g(γ ′)|Y } can be

used to construct Bayesian confidence intervals. It was shown that

var{g(γ′)|Y } = σ2/(nλ){vθ + W ′A(W ′)T − 2W ′AW T M−1Rθ

−(Rθ)T (M−1 −M−1WAW TM−1)Rθ},
(4.1)

where vθ =
4

∑

j=1
θjRj(γ

′, γ′), A = (W T M−1W )−1, M = Qθ + nλI and Rθ =
4
∑

j=1
θjRj(Γ, γ′). So

the Bayesian confidence interval for g(γ ′) is given by ĝ(γ ′) ± zα/2

√

var{g(γ ′)|Y }, where zα/2 is the

100(1 − α/2) percentile of the standard normal distribution.

Although the Bayesian confidence intervals were derived as point-wise, Nychka (1988) pointed out

that they are in fact curve-wise confidence intervals, which means:

1/n

n
∑

i=1

Pr[g(γi) ∈ ĝ(γi)± zα/2

√

var{g(γi)|Y }] ≈ 1− α.

4.2 Testing Hypothesis and Model Selection

The advantage of using SS-ANOVA to model the log-spectrum (2.4) is that it decomposes the time-

varying spectrum into meaningful additive terms. For example, if g3(ω, u) and g4(ω, u) are set to zero,

then the log-spectrum is simply an additive model, which means that the time series can be modeled

by a stationary time series times a time-varying amplitude (termed modulated stationary time series

model, also see the example used in our simulation for example). Under this additive model, we

can further test H0 : β2 = 0, g2(u) = 0, which is equivalent to testing whether the time series is

stationary. Guo (2000) showed that in the SS-ANOVA decomposition such as (2.4), testing gj(.) = 0

is equivalent to testing θj = 0, and under the null hypothesis the GML ratio follows a mixture of

chi-square distributions. The connection can be seen from (3.8). The asymptotic distribution is due

to the fact that θi ≥ 0 and the null hypothesis is on the boundary, which follows from the result of Self

and Liang (1987). This result can also be used for model selection by sequentially testing one term at a

ti Guo (2000) also proposed using maximum likelihood ratios to simultaneously test a non-parametric

term and a parametric term together, which again follows from the result of Self and Liang (1987).

13



Without going into details, we summarize the direct application of the results of Guo (2000) in the

following two lemmas.

Lemma 4.1 In model (2.4), testing H0 : gj(.) = 0 (j=1,. . . , 4) is equivalent to testing θj = 0, and

under the null hypothesis, the asymptotic distribution of two times the logarithm of the GML ratio of

the full model and the nested model is a 50:50 mixture of χ2
1 and χ2

0, where χ2
v is the central chi-square

distribution with v degrees of freedom.

Lemma 4.2 Under the additive model (g3(ω, u) = 0 and g4(ω, u) = 0), testing whether the time series

is stationary is equivalent to testing H0 : β2 = 0, θ2 = 0, and under the null hypothesis, the asymptotic

distribution of two times the logarithm of the ML ratio of the full model and the nested model is a 50:50

mixture of a χ2
1 and a χ2

2.

5 Simulations

To evaluate the finite sample performance of our method, we conduct a small set of simulations. We

generate a time series using the following model yt = exp{0.5 sin(2πt/T )+2}xt, where xt = 0.5xt−1 +εt

and εt ∼ N(0, 1) for t = 1, . . . , T . The true log-spectrum is

g(ω, u) = 4 + sin(2πu)− log{1.25 − cos(2πω)},

for ω, u ∈ [0, 1]. Figure 5.1 shows the true log-spectrum. This corresponds to the model (2.4) with the

two interaction terms (g3(ω, u), g4(ω, u)) set to zero.

In our simulations, we use the additive model to estimate the log-spectrum and calculate the

Bayesian confidence intervals. For T = 512, 1024, 2048, 4096, we each generate 100 replicates and cal-

culate the coverage of the Bayesian confidence intervals and mean square errors, which are summarized

in Figure 5.3 and Figure 5.4.

In these simulations, the time series is partitioned into blocks of equal lengths. The time points

chosen to calculate the local periodograms are the middle points of these blocks, and the frequency

points for all of these blocks are same and the number of the frequency points is chosen such that the

total number of time-frequency points is less than 2000 for computational efficiency. For T = 512, the

time series is partitioned into 16 blocks and the number of the selected frequency points on each block
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Figure 5.1: True log-spectrum

is 32. For T = 1024, 2048, the number of block is 32 and the number of the selected frequency points

is also 32. For T = 4096, the number of blocks is 64 and the number of selected frequency points is 32.

The estimate of the first simulated time series for each of the four settings is shown in Figure 5.2.

Figure 5.3 shows the box plots of the coverage of the 95% confidence intervals and the mean square

errors are given in Figure 5.4. From these plots, it can be seen that as the sample size increases, the

coverage gets better (closer to 95%) and the mean squared errors become smaller. For T = 4096, which

is still a small sample size compared with real applications in time-frequency analysis, our method

already performs very well in terms of coverage and MSE.

6 Application to EEG Data

In this section, we apply our method to the EEG data shown in Figure 1.1. The length of the time series

we used is 20480. The time series is partitioned into 40 disjoint intervals of equal lengths. On each

block, there are 512 observations. The frequency points selected to calculate the SLEX periodograms

are same on all these blocks and the number is 32. The final estimates and confidence intervals are

calculated on 100 × 80 time-frequency grid points.

We first need to choose a best model. As the time series is clearly nonstationary, we start with the
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Figure 5.2: The estimated log-spectrum of the first of the 100 replicates in each setting.
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Table 1: Results of the model selection procedure

Step Model -2 log-GML p-value

1 β1 + β2(u− 0.5) + g1(ω) + g2(u) 500.25 NA

2(Best) β1 + β2(u− 0.5) + g1(ω) + g2(u) + g3(ω, u) 476.37 <0.0001 (2 vs 1)

3 Full Model 476.18 0.4537 (3 vs 2)

additive model and then add one term at a time up to the full model of (2.4). Applying the result

of Lemma 4.1, we can choose the best model. Table 1 summarizes the results. The second column

describes the model, the third column is −2 times log-GML. Finally, the fourth column is the p-value

calculated using −2 times log-GML ratio compared with a 50 : 50 mixture of χ2
1 and χ2

0. We conclude

that the model with g4(.) = 0 is the best model. This means that the EEG data can not be adequately

modeled by a modulated stationary time series model because of the presence of g3(.) in the final model.

Figure 6.1 shows the estimates, together with the 95% Bayesian confidence intervals estimated

using the best model. From the plot, we can see that at all times power at the lowest frequency is

about 4 times greater that the highest frequency. Before the seizure, the spectrum is almost stationary.

Then we start seeing some ripples in the log-spectrum which turn into a huge surge. Energy in all

frequencies increases by almost 5 times. This result is similar to the result reported in Ombao et al.

(2001). However, modeling the log-spectrum instead of the spectrum allows us to quantify more details

in the higher frequencies which may otherwise be dominated by the more dramatic changes in the lower

frequencies. After the seizure, the power begins to decrease, but by the end of the monitored period, it

has not returned to the level before the seizure. This can not be directly identified in the time domain

plot showed in Figure 1.1.

7 Conclusion

We have proposed to use SS-ANOVA and SLEX transformation together as a general tool for time-

dependent spectral analysis, which enables joint estimation in time and frequency domains. Inference

procedures such as confidence intervals and hypothesis testing proposed in the SS-ANOVA context

can be adopted for inference on the time-varying spectrum. Unlike most of the existing methods that

focus on estimating a discrete time-varying spectrum which is only asymptotically tied to a smooth

18



0

0.5

1

0

0.5

1

1

2

3

4

5

6

7

8

9

10

Lower Boundary

0

0.5

1

0

0.5

1

1

2

3

4

5

6

7

8

9

10

time

Estimate

frequency

log
−s

pe
ctr

um

0

0.5

1

0

0.5

1

2

3

4

5

6

7

8

9

10

11

Upper Boundary

Figure 6.1: The left and the right are the lower and upper boundaries of the 95% confidence intervals.
The middle is the smoothed estimate of the log-spectrum.

object, we directly model the continuous underlying spectrum, which is assumed to be smooth and has

interpretation at any time-frequency point, even in finite samples.

We proposed a two-stage approach to estimate the underlying spectrum. In order to obtain initial

estimates of the time-varying periodograms, we first need to partition the time series into small blocks

that are approximately stationary. The second stage analysis uses SS-ANOVA to borrow strength from

neighboring blocks to reconstruct a smooth continuous evolutionary spectrum. Unlike most of the

existing methods that estimate the discrete spectrum conditional on the partition, our initial partition

is only to obtain initial estimates of the periodograms and therefore is not critical to the final estimates.

Because of the smoothness assumption on the underlying spectrum and the SS-ANOVA framework,

once we obtain the estimate for a given time-frequency grid, we can obtain an estimate of the spectrum

at any given time-frequency point. This leads to great computational efficiency especially for large data

sets, as we only need to calculate the initial estimates of the periodograms at a coarser time-frequency

grid.

One potential limitation of our proposed method is its smoothness assumption which can not handle

abrupt jumps in the time-varying spectrum. In contrast, the discrete SLEX model (Ombao et al., 2002)

can handle abrupt jumps of finite heights at the break points of the dyadic segmentation. It is possible
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to combine the two methods to estimate a time varying spectrum that is smooth except for a few

abrupt jumps, which we will pursue in our future research.

Appendix A

Proofs of the Theorem 2.1, 2.2 and Lemma 3.1

To prove Theorems 2.1 and 2.2, we need the following propositions. The first is about the orthogonal

property of the SLEX vectors, which can be found in Wickerhauser (1994).

Proposition A.1

T
∑

t=1

φl(ω1, t)φm(ω2, t) =







0 if l 6= m,
∑

t∈Bl

exp{i2π(ω1 − ω2)t} if l = m. (A.1)

Proposition A.2 If the transfer function A(ω, u) satisfies the Assumption 2.1, then it is Hölder con-

tinuous w.r.t. ω and u.

Proposition A.3 For a locally stationary SLEX process {Xt, t = 1, · · · , T} and the spectral function

f(ω, u) which has continuous partial derivatives w.r.t. ω and u, then:

T−1
T

∑

t=1

V ar(Xt) =

∫ 1

0

∫ 1

0
f(ω, u)dωdu + O{max(Sk)/T}. (A.2)

Proof:

From Equation 2.3 and the fact that the SLEX vectors are compactly supported and f S(ω, u) is

Hölder continuous w.r.t. u, we have that:

1/T
T
∑

t=1
V ar(Xt) = 1/T

T
∑

t=1

M
∑

k,l=1

∫ 1
0 fS(ω, t/T )φk(ω, t)φl(ω, t)dω,

= 1/T
M
∑

k=1

T
∑

t=1

∫ 1
0 fS(ω, t/T )φk(ω, t)φk(ω, t)dω

+1/T
∑

|k−l|=1

T
∑

t=1

∫ 1
0 fS(ω, t/T )φk(ω, t)φl(ω, t)dω,

= 1/T
M
∑

k=1

T
∑

t=1

∫ 1
0 fS(ω, uk)φk(ω, t)φk(ω, t)dω

+1/T
∑

|k−l|=1

T
∑

t=1

∫ 1
0 fS(ω, uk)φk(ω, t)φl(ω, t)dω + O{max(Sk)/T},

= 1/T
M
∑

k=1

T
∑

t=1

∫ 1
0 fS(ω, uk)φk(ω, t)φk(ω, t)dω + O{max(Sk)/T},

= 1/T
M
∑

k=1

Sk

∫ 1
0 fS(ω, uk)dω + O{max(Sk)/T},
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where uk is the middle point of the block Bk. The last two equations are from Proposition A.1. Now

replace the sum over k by integration, the above equation is equal to:

=

∫ 1

0

∫ 1

0
fS(ω, u)dωdu + O(

M
∑

k=1

S2
k/T 2) + O{max(Sk)/T}. (A.3)

Now consider
M
∑

k=1

S2
k/T 2. We have

M
∑

k=1

S2
k/T 2 ≤ max(Sk)

M
∑

t=1
Sk/T

2 = max(Sk)/T. (A.4)

The Proposition follows from Equation A.3 and A.4.

Proof of Theorem 2.1 Given a SLEX locally stationary process {XS
t , t = 1, · · · , T} with transfer

function AS(ω, u), we have

XS
t =

M
∑

j=1

∫ 1

0
φj(ω, t/T )AS(ω, t/T )dZS(ω). (A.5)

Let AD(ω, u) = AS(ω, u) = A(ω, u) and ZD(ω), ω ∈ [0, 1] be another increment process such that

cov{dZS(ω), dZD(λ)} = δ(ω − λ)dω. (A.6)

Let a Dahlhaus locally stationary process {XD
t , t = 1, · · · , T} be given by the following:

XD
t =

∫ 1

0
exp(i2πωt)AD(ω, t/T )dZD(ω). (A.7)

To prove this Theorem, we rewrite

1/T

T
∑

t=1

E|XS
t −XD

t |
2 = 1/T

T
∑

t=1

{var(XS
t ) + var(XD

t )− 2 cov(XS
t , XD

t )}. (A.8)

From Proposition A.3 and Equation A.7, we have:

1/T
T
∑

t=1
var(XS

t ) =
∫ 1
0

∫ 1
0 f(ω, u)dωdu + O{max(Sk)/T},

1/T
T
∑

t=1
var(XD

t ) =
∫ 1
0

∫ 1
0 f(ω, u)dωdu + O(1/T ).

(A.9)

Let B̃j = [αj − εj , αj+1 + εj+1] be the support of the SLEX vector φj(ω, ·). From Equation A.5 and

A.7, we have:

1/T
T
∑

t=1
cov(XS

t , XD
t ) = 1/T

T
∑

t=1

M
∑

j=1

∫ 1
0 φj(ω, t)f(ω, t/T ) exp(−i2πωt)dω,

= 1/T
M
∑

j=1

∑

t∈B̃j

∫ 1
0 φj(ω, t)f(ω, t/T ) exp(−i2πωt)dω.
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Since f(ω, u) is Hölder continuous w.r.t. u, so for any t ∈ B̃j , |f(ω, t/T ) − f(ω, uj)| ≤ C|t/T − uj | ≤

C(Sj + εj + εj+1)/(2T ) ≤ C max(Sj)/T , where uj is the middle point of block Bj . So

|1/T
T
∑

t=1
cov(XS

t , XD
t )− 1/T

M
∑

j=1

∑

t∈B̃j

∫ 1
0 φj(ω, t)f(ω, uj) exp(−i2πωt)dω|

= 1/T |
M
∑

j=1

∑

t∈B̃j

∫ 1
0 φj(ω, t){f(ω, t/T )− f(ω, uj)} exp(−i2πωt)dω|

≤ 1/T
M
∑

j=1

∑

t∈B̃j

∫ 1
0 |φj(ω, t)||f(ω, t/T ) − f(ω, uj)|| exp(−i2πωt)|dω

≤ 1/T
M
∑

j=1

∑

t∈B̃j

∫ 1
0 C max(Sj)/T |φj(ω, t)|dω ≤ 1/T

M
∑

j=1
Sj2C max(Sj)/T = 2C max(Sj)/T.

(A.10)

From the construction of the SLEX vectors, we have the following:

|1/Sj

∑

t∈B̃j

φj(ω, t) exp(−2iπωt)− 1| ≤ 4max(εj)/min(Sj).

Then we have:

|1/T
M
∑

j=1

∑

t∈B̃j

∫ 1
0 φj(ω, t)f(ω, uj) exp(−i2πωt)dω − 1/T

M
∑

j=1

∫ 1
0 Sjf(ω, uj)dω|

= 1/T |
M
∑

j=1

∫ 1
0 f(ω, uj)

∑

t∈B̃j

{φj(ω, t) exp(−i2πωt)− Sj}dω|

≤ 1/T
M
∑

j=1

∫ 1
0 Sjf(ω, uj)|1 − 1/Sj

∑

t∈B̃j

φj(ω, t) exp(−2iπωt)|dω

≤ 1/T
M
∑

j=1

∫ 1
0 Sj f(ω, uj) dω 4max(εj)/min(Sj) ≤ 4C ′ max(εj)/min(Sj) ,

(A.11)

where C ′ = sup
ω,u
{f(ω, u)}.

From Equation A.10 and A.11, we have:

|1/T
T
∑

t=1
cov(XS

t , XD
t )− 1/T

M
∑

j=1

∫ 1
0 Sjf(ω, uj)dω| = O{max(Sj)/T} + O{max(εj)/min(Sj)} .(A.12)

Replace the sum over the blocks by the integral for u ∈ [0, 1], we have:

1/T

M
∑

j=1

∫ 1

0
Sjf(ω, uj)dω =

∫ 1

0

∫ 1

0
f(ω, u)dωdu + O{max(Sj)/T}. (A.13)

From Equation A.12 and A.13,

1/T
T
∑

t=1
cov(XS

t , XD
t ) =

∫ 1
0

∫ 1
0 f(ω, u)dωdu + O{max(Sj)/T}+ O{max(εj)/min(Sj)}. (A.14)
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The Theorem follows from Equations A.8, A.9 and A.14.

Proof of Theorem 2.2

From Assumption 2.1, the transfer function A(ω, u) and the spectrum function f(ω, u) are Hölder

continuous w.r.t. ω, u.

Let the SLEX coefficient θ̂j,k,T given by 3.2, we have:

E|θ̂j,k,T |
2 = 1/Sj

T
∑

t,s=1
E(XtXs)φj(ωk, t)φj(ωk, s),

= 1/Sj

T
∑

t,s=1

M
∑

l,m=1

∫ 1
0 AS(λ, t/T )AS(λ, s/T )φl(λ, t)φm(λ, s)dλ φj(ωk, t)φj(ωk, s).

Since the SLEX vectors are compactly supported, the summations for t, s and l,m in the above equation

only need to be considered for t, s in the support of φj(ωk, ·) and l,m = j − 1, j, j + 1. Since AS(λ, τ)

is Hölder continuous w.r.t. τ , AS(λ, t/T ) = AS(λ, uj) + O(Sj/T ) for any t in the support of the SLEX

vectors φj(ωk, ·), where uj is the middle point of the block Bj . Hence, from Proposition A.1, the above

is equal to:

= 1/Sj

M
∑

l,m=1

T
∑

t,s=1

∫ 1
0 AS(λ, uj)AS(λ, uj)φl(λ, t)φm(λ, s)dλ φj(ωk, t)φj(ωk, s)

+O{max(S2
m)/T},

= 1/Sj

T
∑

t,s=1

∫ 1
0 |A

S(λ, uj)|
2φj(λ, t)φj(λ, s)dλ φj(ωk, t)φj(ωk, s) + O{max(S2

m)/T}.

= 1/Sj

∫ 1
0 |A

S(λ, uj)|
2

∑

t,s∈Bj

exp{i2π(λ − ωk)(t− s)}dλ + O{max(S2
m)/T},

= fS(ωk, uj) + O(1/Sj) + O{max(S2
m)/T}.

(A.15)

Since the time series {Xt, t = 1, · · · , T} also has the Dahlhaus representation (2.1), we have:

E|θ̂j(ωk)|
2 = 1/Sj

T
∑

t,s=1
E(XtXs)φj(ωk, t)φj(ωk, s),

= 1/Sj

T
∑

t,s=1

∫ 1
0 AD(λ, t/T )AD(λ, s/T ) exp{i2πλ(t − s)}dλφj(ωk, t)φj(ωk, s),

= 1/Sj

T
∑

t,s=1

∫ 1
0 |A

D(λ, uj)|
2 exp{i2πλ(t− s)}dλφj(ωk, t)φj(ωk, s) + O(S2

j /T ).

(A.16)

The last equation is because that AD(ω, u) is Hölder continuous w.r.t. u.

From the construction of the SLEX vectors, we have that:

|
T

∑

t=1

φ(ωk, t) exp(−i2πλt)−
∑

t∈Bj

exp{i2π(ωk − λ)t}| = O{max(εl)}.
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By analogy to the consideration above on the derivation of Equation A.15, Equation A.16 is equal

to:

= O(S2
j /T ) + 1/Sj

∫ 1
0 |A

D(λ, uj)|
2

∑

t,s∈Bj

exp{i2π(ωk − λ)(t− s)}dλ + O[max(ε2
l )}/S

2
j ],

= O(S2
j /T ) + fD(ωk, uj) + O(1/Sj) + O{max(ε2

l )/Sj},
(A.17)

From Equation A.15 and A.17, we have that

|fD(ωk, uj)− fS(ωk, uj)| = o(1). (A.18)

Since fD(ω, u) and fS(ω, u) are Hölder continuous w.r.t. ω, u, then for any ω, u ∈ [0, 1], let [uT ] ∈ Bj

for some j and k/Sj < ω ≤ (k + 1)/Sj for some k ∈ {1, · · · , Sj}. We have:

|fS(ω, u)− fS(ωk, uj)| = O(Sj/T ) + O(1/Sj),
|fD(ω, u) − fD(ωk, uj)| = O(Sj/T ) + O(1/Sj).

(A.19)

From Equation A.18 and A.19, we have |f S(ω, u)−fD(ω, u)| = o(1) as max(Sj)/T → 0 and min(Sj) →

∞.

Proof of Lemma 3.1 First we have:

θ̂j,k,T = 1/
√

Sj

T
∑

t=1
Xtφj(ωk, t)

= 1/
√

Sj

T
∑

t=1

M
∑

l=1

∫ 1
0 AS(λ, t/T )φl(λ, t)dZ(λ)φj(ωk, t)

= 1/
√

Sj

T
∑

t=1

min(j+1,M)
∑

l=max(j−1,1)

∫ 1
0 AS(λ, t/T )φl(λ, t)dZ(λ)φj(ωk, t)

= 1/
√

Sj

M
∑

l=1

T
∑

t=1

∫ 1
0 AS(λ, uj)φl(λ, t)dZ(λ)φj(ωk, t) + r1

= 1/
√

Sj

T
∑

t=1

∫ 1
0 AS(λ, uj)φj(λ, t)dZ(λ)φj(ωk, t) + r1

= 1/
√

Sj

αj+1−εj+1
∑

t=αj+εj

∫ 1
0 AS(λ, uj) exp{2π(λ − ωk)t}dZ(λ) + r1 + r2.

where

r1 = 1/
√

Sj

T
∑

t=1

min(j+1,M)
∑

l=max(j−1,1)

∫ 1
0 {A

S(λ, t/T ) −AS(λ, uj)}φl(λ, t)dZ(λ)φj(ωk, t)

r2 = 1/
√

Sj

j+1
∑

m=j

αm+εm
∑

t=αm−εm

∫ 1
0 AS(λ, uj)φj(λ, t)dZ(λ)φj(ωk, t)

It is easy to see that E(r1) = E(r2) = 0. Similar to the proof of Theorem 2.2, using the Hölder

continuity of AS(ω, u) w.r.t. u and that the SLEX vectors are orthogonal and compactly supported,
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we get the following:

E|r1|
2 = V ar(r1) = 1/Sj

T
∑

t,s=1

min(j+1,M)
∑

l,m=max(j−1,1)

∫ 1
0 {A

S(λ, t/T ) −AS(λ, uj)}

{AS(λ, s/T ) −AS(λ, uj)}φl(λ, t)φm(ωk, s)φj(ωk, s)φj(ωk, t)dλ

= 1/Sj

min(j+1,M)
∑

l,m=max(j−1,1)

∑

t∈Bl,s∈Bm

O{max(Sj)/T} = O{max(S2
j )/T}.

E|r2|
2 = V ar(r2) = 1/Sj

j+1
∑

m=j

αm+εm
∑

t,s=αm−εm

∫ 1
0 |A

S(λ, uj)|
2φj(λ, t)φj(λ, s)dλφj(ωk, t)φj(ωk, s)

= 1/Sj

j+1
∑

m=j

αm+εm
∑

t,s=αm−εm

O(1) = O{max(ε2
k)/Sj}.

As max(S2
j )/T = o(1) and max(ε2

j )/min(Sj) = o(1), r1, r2 converge to 0 in probability. So θ̂j,k,T has the

same asymptotic distribution as 1/
√

Sj

αj+1−εj+1
∑

t=αj+εj

∫ 1
0 AS(λ, uj) exp{i2π(λ−ωk)t}dZ(λ). Since AS(λ, uj)

does not depend on time t, the Lemma then follows from the result for a stationary process.
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